Synthesize High-Quality Multi-Contrast Magnetic Resonance Imaging From Multi-Echo Acquisition Using Multi-Task Deep Generative Model
Multi-echo saturation recovery sequence can provide redundant information to synthesize multi-contrast magnetic resonance imaging. Traditional synthesis methods, such as GE's MAGiC platform, employ a model-fitting approach to generate parameter-weighted contrasts. However, models' over-sim...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 10; pp. 3089 - 3099 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multi-echo saturation recovery sequence can provide redundant information to synthesize multi-contrast magnetic resonance imaging. Traditional synthesis methods, such as GE's MAGiC platform, employ a model-fitting approach to generate parameter-weighted contrasts. However, models' over-simplification, as well as imperfections in the acquisition, can lead to undesirable reconstruction artifacts, especially in T2-FLAIR contrast. To improve the image quality, in this study, a multi-task deep learning model is developed to synthesize multi-contrast neuroimaging jointly using both signal relaxation relationships and spatial information. Compared with previous deep learning-based synthesis, the correlation between different destination contrast is utilized to enhance reconstruction quality. To improve model generalizability and evaluate clinical significance, the proposed model was trained and tested on a large multi-center dataset, including healthy subjects and patients with pathology. Results from both quantitative comparison and clinical reader study demonstrate that the multi-task formulation leads to more efficient and accurate contrast synthesis than previous methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2020.2987026 |