Suitability of air sampling locations downstream of bends and static mixing elements

The revised standard for sampling effluent air from stacks and ducts of the nuclear industry places limits on the non-uniformity of velocity and contaminant profiles at the sampling location; namely, the coefficients of variation must not exceed 20% over an area that encompasses at least the center...

Full description

Saved in:
Bibliographic Details
Published inHealth physics (1958) Vol. 77; no. 6; p. 703
Main Authors McFarland, A R, Gupta, R, Anand, N K
Format Journal Article
LanguageEnglish
Published United States 01.12.1999
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The revised standard for sampling effluent air from stacks and ducts of the nuclear industry places limits on the non-uniformity of velocity and contaminant profiles at the sampling location; namely, the coefficients of variation must not exceed 20% over an area that encompasses at least the center 2/3 of the cross sectional area. Tests were conducted to characterize the degree of mixing at downstream locations as affected by several types of flow disturbances, including 90 degree elbows and commercial static mixing devices. Flow straighteners were incorporated into the ducting upstream of the mixer to be tested to simulate the dampening of flow turbulence that might occur because of upstream HEPA filters. The coefficients of variation of velocity and tracer gas concentration measured in a straight tube at a distance of 3 diameters downstream from a 90 degree elbow were 17% and 69%, respectively. The mixing is impacted by the upstream flow turbulence. Without a flow straightener, the tracer gas concentration coefficient of variation was reduced to 33% at the 3-diameter location. The use of static mixing elements can greatly enhance the mixing process. A ring placed just downstream of a 90 degree elbow, which blocks the outer 56% of the cross sectional area, results in a coefficient of variation of 19% for tracer gas concentration at the 3-diameter location. Pressure loss across the elbow with the ring is about nine times that of the basic elbow. One of the commercially available static mixers provides coefficients of variation that are less than 10% for both velocity and tracer gas concentration at 4 diameters downstream from the mixer with a pressure loss that is only about 3.5 times as large as that of a 90 degree elbow.
ISSN:0017-9078
DOI:10.1097/00004032-199912000-00015