Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues

Prussian blue analogues (PBAs, A2T[M(CN)6], A = Li, K, Na; T = Fe, Co, Ni, Mn, Cu, etc.; M = Fe, Mn, Co, etc.) are a large family of materials with an open framework structure. In recent years, they have been intensively investigated as active materials in the field of energy conversion and storage,...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 32; pp. e1900470 - n/a
Main Authors Li, Wei‐Jie, Han, Chao, Cheng, Gang, Chou, Shu‐Lei, Liu, Hua‐Kun, Dou, Shi‐Xue
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prussian blue analogues (PBAs, A2T[M(CN)6], A = Li, K, Na; T = Fe, Co, Ni, Mn, Cu, etc.; M = Fe, Mn, Co, etc.) are a large family of materials with an open framework structure. In recent years, they have been intensively investigated as active materials in the field of energy conversion and storage, such as for alkaline‐ion batteries (lithium‐ion, LIBs; sodium‐ion, NIB; and potassium‐ion, KIBs), and as electrochemical catalysts. Nevertheless, few review papers have focused on the intrinsic chemical and structural properties of Prussian blue (PB) and its analogues. In this Review, a comprehensive insight into the PBAs in terms of their structural and chemical properties, and the effects of these properties on their materials synthesis and corresponding performance is provided. This Review provides a comprehensive overview of the latest research progress on Prussian blue analogues (PBAs), including the synthesis methods, structural and chemical properties of PBAs, various applications for these PBAs, and the effects of their structural and chemical properties on material synthesis and applications. Finally, some personal viewpoints on the challenges and outlook for PBAs application are included.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201900470