Gamma-ray emission from the Sagittarius dwarf spheroidal galaxy due to millisecond pulsars
The Fermi bubbles are giant, γ-ray-emitting lobes emanating from the nucleus of the Milky Way discovered in ~1–100 GeV data collected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. Previous work has revealed substructure within the Fermi bubbles that has been interpreted a...
Saved in:
Published in | Nature astronomy Vol. 6; no. 11; pp. 1317 - 1324 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2022
Nature Publishing Group Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Fermi bubbles are giant, γ-ray-emitting lobes emanating from the nucleus of the Milky Way discovered in ~1–100 GeV data collected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. Previous work has revealed substructure within the Fermi bubbles that has been interpreted as a signature of collimated outflows from the Galaxy’s supermassive black hole. Here we show via a spatial template analysis that much of the γ-ray emission associated with the brightest region of substructure—the so-called cocoon—is probably due to the Sagittarius dwarf spheroidal galaxy (dSph). This large Milky Way satellite is viewed through the Fermi bubbles from the position of the Solar System. As a tidally and ram-pressure stripped remnant, the Sagittarius dSph has no ongoing star formation, but we nevertheless demonstrate that the dwarf’s millisecond pulsar population can plausibly supply the γ-ray signal that our analysis associates with its stellar template. The measured spectrum is naturally explained by inverse Compton scattering of cosmic microwave background photons by high-energy electron–positron pairs injected by millisecond pulsars belonging to the Sagittarius dSph, combined with these objects’ magnetospheric emission. This finding plausibly suggests that millisecond pulsars produce significant γ-ray emission among old stellar populations, potentially confounding indirect dark-matter searches in regions such as the Galactic Centre, the Andromeda galaxy and other massive Milky Way dSphs.
A bright patch in the Fermi bubbles, previously attributed to a jet launched by the Galaxy’s central black hole, is actually due to gamma-ray emission by millisecond pulsars in a background, satellite galaxy of the Milky Way. |
---|---|
Bibliography: | SC0020262 USDOE Office of Science (SC) |
ISSN: | 2397-3366 2397-3366 |
DOI: | 10.1038/s41550-022-01777-x |