Respirometric tests in a combined UASB-MBR system treating wastewater containing emerging contaminants at different OLRs and temperatures: Biokinetic analysis

This research focuses on the application of respirometric techniques to provide new insights into the biokinetic behaviour of bacterial species developed in an Upflow Anaerobic Sludge Blanked -UASB reactor combined with a membrane bioreactor -MBR, treating urban wastewater with emerging contaminants...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 345; p. 118643
Main Authors Moya-Llamas, M.J., Pacazocchi, M.G., Trapote, A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research focuses on the application of respirometric techniques to provide new insights into the biokinetic behaviour of bacterial species developed in an Upflow Anaerobic Sludge Blanked -UASB reactor combined with a membrane bioreactor -MBR, treating urban wastewater with emerging contaminants frequently found in this kind of effluents. The lab-scale pilot plant was operated at different metabolic and operational conditions by limiting the organic loading rate- OLR of the influent. In a first stage, the MBR was performed with suspended biomass, while in a second stage bio-supports were introduced to operate coexisting suspended and fixed biomass. From the results of the microscopic monitoring of sludge, it was concluded that the decrease in OLR resulted in a greater disintegration of the floc structure, more dispersed growth, and a low presence of inter-floccular bonds. However, no effect of toxicity or inhibition of microorganisms caused by the presence of emerging contaminants -ECs was determined. Kinetic modelling was carried out to study the behaviour of the system. The results showed a slowing down of biomass degradative capacity at low OLR stages and operating at low temperatures of mixed liquor. In addition, a decrease in oxygen consumption was observed with decreasing biodegradable substrate, resulting in lower degradation of organic matter. Mean values of specific oxygen uptake rate and heterotrophic biomass yield at low OLR were SOUR end = 1.49 and 1.15 mg O2· g MLVSS−1 h−1 and YH,MLSSV end = 0.48 and 0.28 mg MLVSS· mg COD−1substrate at stage 1 (suspended biomass) and stage 2 (suspended and supported biomass), respectively. From the analysis of the endogenous decomposition constant (kd), a higher cell lysis was determined operating with suspended biomass (kd = 0.03 d−1) in comparison to the operation coexisting suspended and supported biomass (kd = 0.01 d−1). Heterotrophic biomass yield values (YH, MLVSS = 0.48 ± 0.06, 0.40 ± 0.01 and 0.29 ± 0.01 mg MLVSS· mg COD−1substrate at high, medium and low OLR) showed lower sludge production at low OLR due to the influence of substrate limitation on cell growth. •Kinetic modelling of aerobic biomass in a UASB-MBR was performed by respirometric techniques.•No toxicity or inhibition effect of microorganisms caused by the presence of ECs at trace concentrations was detected.•The biomass showed a slowing down of its degradative capacity at low OLR stages and operating at low temperatures of mixed liquor.•The coexistence of suspended and supported biomass resulted in lower DO requirements.•Heterotrophic biomass yield values -YH, MLVSS showed lower sludge production at low OLR due to the influence of substrate limitation on cell growth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.118643