Controlling the function of bioactive worm micelles by enzyme-cleavable non-covalent inter-assembly cross-linking
Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cro...
Saved in:
Published in | Journal of controlled release Vol. 368; pp. 15 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Drugs that form self-assembled supramolecular structures to be most-active is a promising way of creating new highly specific and active pharmaceuticals. Controlling the activity of bioactive supramolecular structures such as drug-loaded micelles is possible by both core/shell and inter-assembly cross-linking. However, if the flexibility of the assembly is mandatory for the activity cross-linking is not feasible. Thus, such structures cannot be manipulated in their activity.
The present study demonstrates a novel concept to control the activity of not drug-releasing, non-cross-linked bioactive superstructures. This is achieved by formation of nanostructured nanoparticles derived by non-covalent inter-assembly cross-linking of the superstructures. This is shown on the example of amphiphilic diblock-copolymers conjugated with the antibiotic ciprofloxacin (CIP). These polymer-antibiotic conjugates form worm micelles, which greatly activate the conjugated antibiotic without releasing it. Non-covalent inter-assembly cross-linking of these CIP-worm-micelles with amphiphilic triblock copolymers terminated with lipase-cleavable esters leads to nanostructured nanoparticles that resemble cross-linked worm micelles and show an up to 135-fold lower activity than the free worm micelles. The activity of the worm-micelles can be fully recovered by cleaving the end groups of the polymeric cross-linker with lipase.
[Display omitted]
•nanoprecipitation inactivates ciprofloxacin polymer conjugate (PAC) worm micelles.•non-covalent cross-linking of PAC by triblockcopolymers (TBC) with ester end groups.•lipase cleaves ester end groups of TBC in aggregates.•lipase destroys superstructure of aggregates.•lipase releases activated, antibacterial PAC worm micelles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2024.02.013 |