An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair
In this contribution, an injectable hydrogel was developed with chitosan, gelatin, β-glycerphosphate and Arg-Gly-Asp (RGD) peptide: this hydrogel is liquid in room temperature and rapidly gels at 37 °C; RGD peptide promises better growth microenvironment for various cells, especially endothelial cel...
Saved in:
Published in | Annals of biomedical engineering Vol. 48; no. 5; pp. 1511 - 1523 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this contribution, an injectable hydrogel was developed with chitosan, gelatin, β-glycerphosphate and Arg-Gly-Asp (RGD) peptide: this hydrogel is liquid in room temperature and rapidly gels at 37 °C; RGD peptide promises better growth microenvironment for various cells, especially endothelial cells (EC), smooth muscle cells (SMC) and mesenchymal stem cells (MSC). Both stromal cell-derived factor-1 (SDF-1) nanoparticle and vascular endothelial growth factor (VEGF) nanoparticles were loaded in the injectable hydrogel to simulate the natural nanoparticles in the extracellular matrix (ECM) to promote angiogenesis.
In vitro
EC/SMC and MSC/SMC co-culture experiment indicated that the nanocomposite hydrogel accelerated constructing embryonic form of blood vessels, and chick embryo chorioallantoic membrane model demonstrated its ability of improving cells migration and blood vessel regeneration. We injected this nanocomposite hydrogel into rat myocardial infarction (MI) model and the results indicated that the rats heart function recovered better compared control group. We hope this injectable nanocomposite hydrogel may possess wider application in tissue engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0090-6964 1573-9686 1573-9686 |
DOI: | 10.1007/s10439-020-02471-7 |