Blood-Brain Barrier (BBB) Pharmacoproteomics: Reconstruction of In Vivo Brain Distribution of 11 P-Glycoprotein Substrates Based on the BBB Transporter Protein Concentration, In Vitro Intrinsic Transport Activity, and Unbound Fraction in Plasma and Brain in Mice

The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport act...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 339; no. 2; pp. 579 - 588
Main Authors Uchida, Yasuo, Ohtsuki, Sumio, Kamiie, Junichi, Terasaki, Tetsuya
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-transfected LLC-PK1 (L-mdr1a) and parental cells. P-gp expression amounts were determined by quantitative targeted absolute proteomics. Unbound drug fractions in plasma and brain were obtained from the literature and by measuring brain slice uptake, respectively. Brain-to-plasma concentration ratios (Kp brain) and its ratios between wild-type and mdr1a/1b(−/−) mice (Kp brain ratio) were obtained from the literature or determined by intravenous constant infusion. Unbound brain-to-plasma concentration ratios (Kp,uu,brain) were estimated from Kp brain and unbound fractions. Based on pharmacokinetic theory, Kp brain ratios were reconstructed from in vitro P-gp transport activities and P-gp expression amounts in L-mdr1a cells and mouse brain capillaries. All reconstructed Kp brain ratios were within a 1.6-fold range of observed values. Kp brain then was reconstructed from the reconstructed Kp brain ratios and unbound fractions. Kp,uu,brain was reconstructed as the reciprocal of the reconstructed Kp brain ratios. For quinidine, loperamide, risperidone, indinavir, dexamethasone, paclitaxel, verapamil, loratadine, and diazepam, the reconstructed Kp brain and Kp,uu,brain agreed with observed and estimated in vivo values within a 3-fold range, respectively. Thus, brain distributions of P-gp substrates can be reconstructed from P-gp expression levels, in vitro activity, and drug unbound fractions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3565
1521-0103
1521-0103
DOI:10.1124/jpet.111.184200