Salinity and nutrient modulate soil bacterial communities in the coastal wetland of the Yellow River Delta, China

The Yellow River Delta is the largest and youngest estuarine and coastal wetland in China and is experiencing the most active interactions of seawater and freshwater in the world. Bacteria played multifaceted influence on soil biogeochemical processes, and it was necessary to investigate the intermo...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 12; pp. 14621 - 14631
Main Authors Cheng, Qingli, Chang, Huiping, Yang, Xue, Wang, Ding, Wang, Wenlin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Yellow River Delta is the largest and youngest estuarine and coastal wetland in China and is experiencing the most active interactions of seawater and freshwater in the world. Bacteria played multifaceted influence on soil biogeochemical processes, and it was necessary to investigate the intermodulation between the soil factors and bacterial communities. Soil samples were collected at sites with different salinity degree, vegetations, and interference. The sequences of bacilli were tested using 16S rRNA sequencing method and operational taxonomic units were classified with 97% similarity. The soil was highly salinized and oligotrophic, and the wetland was nitrogen-restricted. Redundancy analysis suggested that factors related with seawater erosion were principal to drive the changes of soil bacterial communities and then the nutrient level and human disturbance. A broader implication was that, in the early succession stages of the coastal ecosystem, seawater erosion was the key driver of the variations of marine oligotrophic bacterial communities, while the increasing nutrient availability may enhance in the abundance of the riverine copiotrophs in the late stages. This study provided new insights on the characteristics of soil bacterial communities in estuarine and coastal wetlands.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-11626-x