Toxicity of NSAID drug (paracetamol) to nontarget organism—Nostoc muscorum
Due to many folds increase in application of human and veterinary medicines, pharmaceuticals, a new category of pollutants, have emerged in our environment. They exist as residues in rivers, sewage effluents, streams, surface, ground, and potable water. Paracetamol (acetaminophen) is one such drug t...
Saved in:
Published in | Environmental science and pollution research international Vol. 27; no. 28; pp. 35208 - 35216 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to many folds increase in application of human and veterinary medicines, pharmaceuticals, a new category of pollutants, have emerged in our environment. They exist as residues in rivers, sewage effluents, streams, surface, ground, and potable water. Paracetamol (acetaminophen) is one such drug that is used as an antipyretic and analgesic medicine. It is a non-steroidal antiinflammatory drug (NSAID) and is easily available in the market because no medical prescription is necessary for its purchase and use. Paracetamol remains physiologically active even after their expiry period. Their detection in the environment in bioactive form has resulted in adverse effects on nontarget species. To determine the effect of paracetamol on aquatic photosynthetic organic (Cyanobacteria—
Nostoc muscorum
), present study was performed. Paracetamol (25 mg/L, 50 mg/L, 75 mg/L, 100, 125, and 150 mg/L) exposure showed toxic responses on the test organism by generating oxidative stress (MDA, H
2
O
2,
O
2
.-
). Paracetamol caused a significant decrease in growth of cyanobacteria and showed EC
50
113.68 mg/L after the 6th day of treatment. Photosynthetic pigments (chlorophyll, carotenoid, and phycobiliprotein) decreased with paracetamol increase. Antioxidant enzymatic (SOD, CAT, APX, GST, and GR) and osmolyte (Proline) also increased with increase in paracetamol to counteract the oxidative stress. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-020-09802-0 |