Template-based Abstractive Microblog Opinion Summarization
We introduce the task of microblog opinion summarization (MOS) and share a dataset of 3100 gold-standard opinion summaries to facilitate research in this domain. The dataset contains summaries of tweets spanning a 2-year period and covers more topics than any other public Twitter summarization datas...
Saved in:
Published in | Transactions of the Association for Computational Linguistics Vol. 10; pp. 1229 - 1248 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA
MIT Press
22.11.2022
MIT Press Journals, The The MIT Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce the task of microblog opinion summarization (MOS) and share a dataset of 3100 gold-standard opinion summaries to facilitate research in this domain. The dataset contains summaries of tweets spanning a 2-year period and covers more topics than any other public Twitter summarization dataset. Summaries are abstractive in nature and have been created by journalists skilled in summarizing news articles following a template separating factual information (main story) from author opinions. Our method differs from previous work on generating gold-standard summaries from social media, which usually involves selecting representative posts and thus favors extractive summarization models. To showcase the dataset’s utility and challenges, we benchmark a range of abstractive and extractive state-of-the-art summarization models and achieve good performance, with the former outperforming the latter. We also show that fine-tuning is necessary to improve performance and investigate the benefits of using different sample sizes. |
---|---|
Bibliography: | 2022 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2307-387X 2307-387X |
DOI: | 10.1162/tacl_a_00516 |