Nematic-isotropic transition in a density-functional theory for hard spheroidal colloids
. We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by min...
Saved in:
Published in | The European physical journal. E, Soft matter and biological physics Vol. 41; no. 11; p. 136 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | .
We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by minimizing the free energy functional and the equations of state are determined. The system exhibits a nematic-isotropic discontinuous transition, characterized by a phase separation between nematic and isotropic phases at finite as well low packing fractions. The model presents a phase behavior which is in good agreement with Monte Carlo simulations for finite aspect ratios.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2018-11746-0 |