Nematic-isotropic transition in a density-functional theory for hard spheroidal colloids

. We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by min...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. E, Soft matter and biological physics Vol. 41; no. 11; p. 136
Main Author Nascimento, E. S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:. We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by minimizing the free energy functional and the equations of state are determined. The system exhibits a nematic-isotropic discontinuous transition, characterized by a phase separation between nematic and isotropic phases at finite as well low packing fractions. The model presents a phase behavior which is in good agreement with Monte Carlo simulations for finite aspect ratios. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2018-11746-0