Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional....

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 25; no. 5; pp. 1247 - 1273
Main Authors Giacomin, Giambattista, Pakdaman, Khashayar, Pellegrin, Xavier
Format Journal Article
LanguageEnglish
Published Bristol Institute of Physics 01.05.2012
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/25/5/1247