MRP2-mediated transport of etoposide in MDCKII MRP2 cells is unaffected by commonly used non-ionic surfactants

[Display omitted] The aim of the present study was to investigate the ability of non-ionic surfactants to inhibit MRP2-mediated transport in vitro in MDCKII MRP2 cells. Transport studies across MDCKII MRP2 cell monolayers were performed using 3H-etoposide and 3H-digoxin. 19 different non-ionic surfa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 565; pp. 306 - 315
Main Authors Nielsen, Salli, Westerhoff, Anne Marijke, Gé, Lorraine Gaenaelle, Carlsen, Krestine Lundgaard, Pedersen, Maria Diana Læssøe, Nielsen, Carsten Uhd
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The aim of the present study was to investigate the ability of non-ionic surfactants to inhibit MRP2-mediated transport in vitro in MDCKII MRP2 cells. Transport studies across MDCKII MRP2 cell monolayers were performed using 3H-etoposide and 3H-digoxin. 19 different non-ionic surfactants, including several polysorbates (PS), cremophor EL, vitamin E-TPGS, and n-nonyl β-D-glucopyranoside (NG), were investigated. Barrier function of the cells was investigated measuring TEER and transport of 14C-glycine. The amount of isotope was quantified using liquid scintillation counting. In MDCKII MRP2 cells a polarized transport of etoposide and digoxin in the secretory (basolateral to apical) direction with efflux ratios of 5.5 ± 0.7 and 18.5 ± 4.2, respectively, was measured. P-gp inhibitors such as valspodar and zosuquidar did not affect etoposide transport, and furthermore PS20 decreased secretory transport of digoxin, but not of etoposide. Transport of etoposide was therefore mainly MRP2-mediated and used as a probe to investigate pharmaceutical excipients. Non-ionic surfactants did not modulate etoposide transport across intact cell monolayers of MRP2 overexpressing MDCKII cells, although preliminary studies suggest that most were able to alter MRP2-mediated efflux of the fluorescent 5-chloromethylfluorescein (CMF). In conclusion, etoposide transport across MDCKII MRP2 cells was modulated by cyclosporin A, an inhibitor of MRP2 and P-gp, but not by specific P-gp inhibitors (valspodar and zosuquidar), which suggests that etoposide transport is primarily influenced by MRP2. In addition, commonly used non-ionic surfactants did not decrease MRP2-mediated etoposide transport in MDCKII MRP2 cells. These results suggest that etoposide transport in MDCKII MRP2 cells is a model system to investigate MRP2 interactions, and that surfactants may not have a large potential for increasing oral bioavailability of drugs through inhibition of MRP2 transport activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2019.05.023