Formation of Ruthenium Carbenes by gem‐Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans‐Hydrogenation

Insights into the mechanism of the unusual trans‐hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para‐hydrogen (p‐H2) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans‐reduction competes with a pathway in which both H atoms...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 127; no. 42; pp. 12608 - 12613
Main Authors Leutzsch, Markus, Wolf, Larry M., Gupta, Puneet, Fuchs, Michael, Thiel, Walter, Farès, Christophe, Fürstner, Alois
Format Journal Article
LanguageEnglish
German
Published Weinheim WILEY‐VCH Verlag 12.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insights into the mechanism of the unusual trans‐hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para‐hydrogen (p‐H2) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans‐reduction competes with a pathway in which both H atoms of H2 are delivered to a single alkyne C atom of the substrate while the second alkyne C atom is converted into a metal carbene. This “geminal hydrogenation” mode seems unprecedented; it was independently confirmed by the isolation and structural characterization of a ruthenium carbene complex stabilized by secondary inter‐ligand interactions. A detailed DFT study shows that the trans alkene and the carbene complex originate from a common metallacyclopropene intermediate. Furthermore, the computational analysis and the PHIP NMR data concur in that the metal carbene is the major gateway to olefin isomerization and over‐reduction, which frequently interfere with regular alkyne trans‐hydrogenation. Bestimmte Ruthenium‐Komplexe katalysieren die stereochemisch höchst ungewöhnliche trans‐Hydrierung interner Alkine, können jedoch auch eine geminale Hydrierung auslösen, wobei beide H‐Atome einer H2‐Vorstufe auf das gleiche C‐Atom eines Alkins übertragen werden, während das benachbarte C‐Atom in ein Metall‐Carben überführt wird. Diese Prozesse wurden durch PHIP‐NMR‐Spektroskopie (PHIP=Parawasserstoff‐induzierte Polarisation) und Dichtefunktionalrechnungen untersucht.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201506075