Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements

A method for estimating pressure gradients from MR images is demonstrated. Making the usual assumption that the flowing medium is a Newtonian fluid, and with appropriate boundary conditions, the inertial forces (or acceleration components of the flow) are proportional to the pressure gradients. The...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 44; no. 1; pp. 66 - 72
Main Authors Tasu, Jean-Pierre, Mousseaux, Elie, Delouche, Annie, Oddou, Christian, Jolivet, Odile, Bittoun, Jacques
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.07.2000
Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A method for estimating pressure gradients from MR images is demonstrated. Making the usual assumption that the flowing medium is a Newtonian fluid, and with appropriate boundary conditions, the inertial forces (or acceleration components of the flow) are proportional to the pressure gradients. The technique shown here is based on an evaluation of the inertial forces from Fourier acceleration encoding. This method provides a direct measurement of the total acceleration defined as the sum of the velocity derivative vs. time and the convective acceleration. The technique was experimentally validated by comparing MR and manometer pressure gradient measurements obtained in a pulsatile flow phantom. The results indicate that the MR determination of pressure gradients from an acceleration measurement is feasible with a good correlation with the true measurements (r = 0.97). The feasibility of the method is demonstrated in the aorta of a normal volunteer. Magn Reson Med 44:66–72, 2000. © 2000 Wiley‐Liss, Inc.
Bibliography:ark:/67375/WNG-M9HQ5X60-R
istex:547105B1B81EB154B66845AE2EAB683323F1C52E
ArticleID:MRM11
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0740-3194
1522-2594
DOI:10.1002/1522-2594(200007)44:1<66::AID-MRM11>3.0.CO;2-#