Plasmid-Deficient Chlamydia muridarum Fail to Induce Immune Pathology and Protect against Oviduct Disease

Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection in the world. In women, genital infection can cause endometritis and pelvic inflammatory disease with the severe sequelae of ectopic pregnancy or infertility. Chlamydia sp. do not damage tissues directly, but induce...

Full description

Saved in:
Bibliographic Details
Published inJournal of Immunology Vol. 179; no. 6; pp. 4027 - 4034
Main Authors O'Connell, Catherine M, Ingalls, Robin R, Andrews, Charles W., Jr, Scurlock, Amy M, Darville, Toni
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.09.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection in the world. In women, genital infection can cause endometritis and pelvic inflammatory disease with the severe sequelae of ectopic pregnancy or infertility. Chlamydia sp. do not damage tissues directly, but induce an injurious host inflammatory response at the infected site. In the murine model of genital disease with Chlamydia muridarum, TLR2 plays a role in both early production of inflammatory mediators and development of chronic oviduct pathology. We report the results of studies with plasmid-cured C. muridarum mutants that retain the ability to infect the murine genital tract, but fail to cause disease in the oviduct. These mutants do not stimulate TLR2-dependent cytokine production in mice, nor in innate immune cells or epithelial cells in vitro. They induce an effective Th1 immune response, with no evidence for Th1-immune-mediated collateral tissue damage. Furthermore, mice previously infected with the plasmid-deficient strains are protected against oviduct disease upon challenge with virulent C. muridarum. If plasmid-cured derivatives of human C. trachomatis biovars exhibit similar phenotypic characteristics, they have the potential to serve as vaccines to prevent human disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
1365-2567
DOI:10.4049/jimmunol.179.6.4027