Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide

Many applications of porous carbons demand control of pore size and its distribution. One of the most promising ways to mass-produce carbon with the desired porosity is by etching of non-carbon species from inorganic carbon containing materials, such as metal carbides. In this work, carbon was synth...

Full description

Saved in:
Bibliographic Details
Published inMicroporous and mesoporous materials Vol. 86; no. 1; pp. 50 - 57
Main Authors Dash, R.K., Yushin, G., Gogotsi, Y.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 28.11.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many applications of porous carbons demand control of pore size and its distribution. One of the most promising ways to mass-produce carbon with the desired porosity is by etching of non-carbon species from inorganic carbon containing materials, such as metal carbides. In this work, carbon was synthesized from zirconium carbide, ZrC 0.98, in a chlorine environment in the temperature range of 200–1200 °C. Thermodynamic simulation shows the possibility of carbon formation in a broad range of temperature. The structure of the resultant carbon analyzed using Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM), shows that ordering of carbon took place with increase in synthesis temperature. Porosity analyzed using gas sorption technique shows that carbon produced at low temperature (300–600 °C) has small pores with narrow pore size distribution; whereas carbon produced at high temperature (800–1200 °C) has large pores with wider pore size distribution. In comparison with other carbide derived carbons, B 4C and Ti 3SiC 2, whose pore size and its distribution do not change appreciably in 200–1000 °C range; carbon produced from ZrC can have both narrowly distributed micropores and mesopores depending upon the temperature of synthesis. As in carbons produced from other carbides, both the structure and porosity were found to depend on the synthesis temperature.
ISSN:1387-1811
1873-3093
DOI:10.1016/j.micromeso.2005.05.047