An extended microtubule-binding structure within the dynein motor domain

Flagellar dynein was discovered over 30 years ago as the first motor protein capable of generating force along microtubules. A cytoplasmic form of dynein has also been identified which is involved in mitosis and a wide range of other intracellular movements (reviewed in ref. 3). Rapid progress has b...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 390; no. 6660; pp. 636 - 639
Main Authors Vallee, Richard B, Gee, Melissa A, Heuser, John E
Format Journal Article
LanguageEnglish
Published London Nature Publishing 11.12.1997
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Flagellar dynein was discovered over 30 years ago as the first motor protein capable of generating force along microtubules. A cytoplasmic form of dynein has also been identified which is involved in mitosis and a wide range of other intracellular movements (reviewed in ref. 3). Rapid progress has been made on understanding the mechanism of force production by kinesins and myosins. In contrast, progress in understanding the dyneins has been limited by their great size (relative molecular mass 1,000K-2,000K) and subunit complexity. We now report evidence that the entire carboxy-terminal two-thirds of the 532K force-producing heavy chain subunit is required for ATP-binding activity. We further identify a microtubule-binding domain, which, surprisingly, lies well downstream of the entire ATPase region and is predicted to form a hairpin-like stalk. Direct ultrastructural analysis of a recombinant fragment confirms this model, and suggests that the mechanism for dynein force production differs substantially from that of other motor proteins.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/37663