Influences of implant condyle geometry on bone and screw strains in a temporomandibular implant

Abstract A 3D finite element model of an in vitro implanted mandible was analysed. The load point was placed on the condyle in three positions (inside the mouth, centred and outside) to simulate different contact points between the mandible condyle and the temporal bone. The strain fields in the con...

Full description

Saved in:
Bibliographic Details
Published inJournal of cranio-maxillo-facial surgery Vol. 42; no. 3; pp. 194 - 200
Main Authors Mesnard, M, Ramos, A, Simões, J.A
Format Journal Article
LanguageEnglish
Published Scotland Elsevier Ltd 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract A 3D finite element model of an in vitro implanted mandible was analysed. The load point was placed on the condyle in three positions (inside the mouth, centred and outside) to simulate different contact points between the mandible condyle and the temporal bone. The strain fields in the condyle were assessed and detailed around the surgical screws. The temporomandibular implant studied here was modelled on a commercial device that uses four screws to fix it in vivo in a very similar position. The boundary conditions of the numerical model simulated a load on the incisors with a 15 mm mouth aperture. The same contact loads were applied to the two condyles. Numerical results were successfully obtained for the three different contact points: the inside contact produced lower strains on the condyle. The first screw created a critical strain distribution in the bone, just under the screw. The study shows that centred and inside contact induces lower strain distributions. This suggests that spherical condyle geometry should be applied in order to reduce the strains in fixation. As the top screw was observed to play the most critical role, the third screw is in fact unnecessary, since the lower strain distribution suggests that it will be loosened.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-5182
1878-4119
DOI:10.1016/j.jcms.2013.04.010