A WaveNet-based convolutional neural network for river water level prediction

River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of W...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 25; no. 6; pp. 2606 - 2624
Main Authors Chen, Jun, Huang, Yanhua, Wu, Teng, Yan, Jing
Format Journal Article
LanguageEnglish
Published IWA Publishing 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of WLP. It was applied to predict 1/2/3 days ahead the water levels at the Waizhou gauging station of the Ganjiang River (GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937, respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error (MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) both increased to 0.998. This result indicated that the improved model was more efficient for WLP.
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2023.174