A WaveNet-based convolutional neural network for river water level prediction
River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of W...
Saved in:
Published in | Journal of hydroinformatics Vol. 25; no. 6; pp. 2606 - 2624 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IWA Publishing
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of WLP. It was applied to predict 1/2/3 days ahead the water levels at the Waizhou gauging station of the Ganjiang River (GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937, respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error (MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) both increased to 0.998. This result indicated that the improved model was more efficient for WLP. |
---|---|
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2023.174 |