High-temperature oxidation kinetics of sponge-based E110 cladding alloy

Two-sided oxidation experiments were recently conducted at 900°C–1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 499; no. C; pp. 595 - 612
Main Authors Yan, Yong, Garrison, Benton E., Howell, Mike, Bell, Gary L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2018
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-sided oxidation experiments were recently conducted at 900°C–1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100–150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.
Bibliography:USDOE
AC05-00OR22725
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2017.10.067