Investigation of Maize streak virus Pathogenicity Determinants Using Chimaeric Genomes

Genes and intergenic regions were reciprocally exchanged between a highly pathogenic Maize streak virus (MSV) isolate (MSV-MatA) and three less pathogenic isolates (MSV-Kom, MSV-R2, and MSV-VW) to determine the contribution of individual genome constituents to MSV pathogenicity in maize. Comparison...

Full description

Saved in:
Bibliographic Details
Published inVirology (New York, N.Y.) Vol. 300; no. 2; pp. 180 - 188
Main Authors Martin, D.P., Rybicki, E.P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genes and intergenic regions were reciprocally exchanged between a highly pathogenic Maize streak virus (MSV) isolate (MSV-MatA) and three less pathogenic isolates (MSV-Kom, MSV-R2, and MSV-VW) to determine the contribution of individual genome constituents to MSV pathogenicity in maize. Comparison of disease symptoms produced by the 54 resulting chimaeras and parental viruses enabled identification of genome constituents that are primarily responsible for the heightened pathogenicity of MSV-MatA in maize. Whereas pathogenicity determinants were detected in all of the MSV genomic regions examined, generally only chimaeras containing the MSV-MatA long intergenic region, coat protein gene, and/or movement protein gene were more pathogenic than the milder MSV isolates from which most of their genomes were derived. The pathogenicity of chimeras was strongly influenced by the relatedness of their parental viruses and evidence was found of nucleotide sequence-dependent interactions between both coding and intergenic regions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2002.1458