Comparative study on the passivation layers of copper sulphide minerals during bioleaching

The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and sca...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 19; no. 10; pp. 886 - 892
Main Authors Fu, Kai-bin, Lin, Hai, Mo, Xiao-lan, Wang, Han, Wen, Hong-wei, Wen, Zi-long
Format Journal Article
LanguageEnglish
Published Springer Berlin Heidelberg University of Science and Technology Beijing 01.10.2012
Springer Nature B.V
School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Key Laboratory of Solid Waste Treatment and Resource Recycle(Ministry of Education), Southwest University of Science and Technology, Mianyang 621010, China%School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.
Bibliography:The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.
11-5787/T
copper ore treatment; copper sulphide; bioleaching; passivation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-012-0643-x