Curcumin Suppresses Lead-Induced Inflammation and Memory Loss in Mouse Model and In Silico Molecular Docking

This study examined the efficacy of curcumin (Cur) against lead (Pb)-induced oxidative damage, inflammation, and cholinergic dysfunction. Institute for Cancer Research (ICR) mice received Pb (II) acetate in drinking water (1%) with or without Cur via oral gavage. Blood and brain tissues were collect...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 11; no. 6; p. 856
Main Authors Changlek, Suksan, Rana, Mohammad Nasiruddin, Phyu, Moe Pwint, Karim, Naymul, Majima, Hideyuki J, Tangpong, Jitbanjong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examined the efficacy of curcumin (Cur) against lead (Pb)-induced oxidative damage, inflammation, and cholinergic dysfunction. Institute for Cancer Research (ICR) mice received Pb (II) acetate in drinking water (1%) with or without Cur via oral gavage. Blood and brain tissues were collected for investigation. Pb increased the inflammatory markers and oxidative parameters, which were ameliorated by Cur administration. Cur treatment also improved memory loss, learning deficit, and cholinergic dysfunction via elevating acetylcholinesterase (AChE) enzymatic activity and protein expression. In silico molecular docking supported the results; Cur had a potent binding affinity for AChE receptors, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), phosphorylations of IκB kinase (IKK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38). According to the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, Cur could serve as a potential candidate for Pb detoxication substance via exerting antioxidant activity. Taken together, our results suggest that Cur is a natural compound that could be used for the treatment of neurodegenerative disorders via suppressing lead-induced neurotoxicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2304-8158
2304-8158
DOI:10.3390/foods11060856