Flickr Distance: A Relationship Measure for Visual Concepts

This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 34; no. 5; pp. 863 - 875
Main Authors Wu, Lei, Hua, Xian-Sheng, Yu, Nenghai, Ma, Wei-Ying, Li, Shipeng
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.05.2012
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes the Flickr Distance (FD) to measure the visual correlation between concepts. For each concept, a collection of related images are obtained from the Flickr website. We assume that each concept consists of several states, e.g., different views, different semantics, etc., which are considered as latent topics. Then a latent topic visual language model (LTVLM) is built to capture these states. The Flickr distance between two concepts is defined as the Jensen-Shannon (J-S) divergence between their LTVLM. Differently from traditional conceptual distance measurements, which are based on Web textual documents, FD is based on the visual information. Comparing with the WordNet distance, FD can easily scale up with the increasing size of the conceptual corpus. Comparing with the Google Distance (NGD) and Tag Concurrence Distance (TCD), FD uses the visual information and can properly measure the conceptual relations. We apply FD to multimedia-related tasks and find methods based on FD significantly outperform those based on NGD and TCD. With the FD measurement, we also construct a large-scale visual conceptual network (VCNet) to store the knowledge of conceptual relationship. Experiments show that FD is more coherent to human cognition and it also outperforms text-based distances in real-world applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2011.195