Fast radiation pattern evaluation for lens and reflector antennas

A novel algorithm referred to as the fast physical optics (FPO) for computing the radiation patterns of nonplanar aperture antennas over a range of observation angles is presented. The computation is performed in the framework of the conventional physical optics approximation appropriate for the hig...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 51; no. 5; pp. 1063 - 1068
Main Authors Boag, A., Letrou, C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel algorithm referred to as the fast physical optics (FPO) for computing the radiation patterns of nonplanar aperture antennas over a range of observation angles is presented. The computation is performed in the framework of the conventional physical optics approximation appropriate for the high frequency regime. The proposed algorithm is directly applicable to reflector and lens antennas as well as to radomes. The method comprises two steps. First, a decomposition of the aperture into subdomains and computation of the pertinent radiation pattern of each subdomain. Second, interpolation, phase-correction and aggregation of the radiation patterns into the final pattern of the whole aperture. A multilevel algorithm is formulated via a recursive application of the domain decomposition and aggregation steps. The computational structure of the multilevel algorithm resembles that of the FFT while avoiding its limitations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2003.811498