A role for the thermal environment in defining co-stimulation requirements for CD4(+) T cell activation

Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significa...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 14; no. 14; pp. 2340 - 2354
Main Authors Zynda, Evan R, Grimm, Melissa J, Yuan, Min, Zhong, Lingwen, Mace, Thomas A, Capitano, Maegan, Ostberg, Julie R, Lee, Kelvin P, Pralle, Arnd, Repasky, Elizabeth A
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4101
1551-4005
DOI:10.1080/15384101.2015.1049782