Self-neutralizing oligonucleotides with enhanced cellular uptake

There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) ar...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 15; no. 6; pp. 1363 - 1380
Main Authors Yanachkov, Ivan, Zavizion, Boris, Metelev, Valeri, Stevens, Laura J., Tabatadze, Yekaterina, Yanachkova, Milka, Wright, George, Krichevsky, Anna M., Tabatadze, David R.
Format Journal Article
LanguageEnglish
Published CAMBRIDGE Royal Soc Chemistry 07.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.
Bibliography:NIH RePORTER
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-0520
1477-0539
DOI:10.1039/c6ob02576e