Production and characterization of TRISO fuel particles with multilayered SiC

Three distinct composite architectures of silicon carbide (SiC) and pyrocarbon (PyC) were incorporated into the SiC coating layer of tristructural-isotropic (TRISO) nuclear fuel particles. The composite architectures are meant to increase the resistance of SiC coating layer to cracking and fission p...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 515; no. C; pp. 215 - 226
Main Authors Seibert, Rachel L., Jolly, Brian C., Balooch, Mehdi, Schappel, Daniel P., Terrani, Kurt A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three distinct composite architectures of silicon carbide (SiC) and pyrocarbon (PyC) were incorporated into the SiC coating layer of tristructural-isotropic (TRISO) nuclear fuel particles. The composite architectures are meant to increase the resistance of SiC coating layer to cracking and fission product attack during operation and accident scenarios. All composite layers were produced using the existing fluidized bed chemical vapor deposition apparatus that is used for production of TRISO fuel particles without modifications. Detailed characterization of the composite microstructure was carried out via optical and electron microscopy. Nano-indentation examination confirms that mechanical properties of the SiC phase was not affected in the composite architectures, however, the resistance to crack propagation in this coating layer was greatly increased in all cases when compared to the reference monolithic coating layer. The stress required to debond the SiC-inner PyC interface in the reference TRISO particles was determined to be ∼1 GPa using micropillar compression technique. The high strength may explain the ease of crack propagation from the inner PyC to SiC in the reference design. In the composite architectures, the means of crack deflection were effectively incorporated at this interface. Finite element analysis of stress evolution in the fuel particles during normal operation with the reference and composite SiC coating layer architectures did not show any significant differences between the variants.
Bibliography:USDOE Office of Nuclear Energy (NE)
AC05-00OR22725
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2018.12.024