Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins

The in vivo conformational substrates of the GroE chaperonins have been difficult to identify, in part because of limited information on in vivo polypeptide chain folding pathways. Temperature-sensitive folding (tsf) mutants have been characterized for the coat protein and tailspike protein of phage...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 269; no. 45; pp. 27941 - 27951
Main Authors Gordon, C L, Sather, S K, Casjens, S, King, J
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 11.11.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The in vivo conformational substrates of the GroE chaperonins have been difficult to identify, in part because of limited information on in vivo polypeptide chain folding pathways. Temperature-sensitive folding (tsf) mutants have been characterized for the coat protein and tailspike protein of phage P22. These mutations block intracellular folding at restrictive temperature by increasing the lability of folding intermediates without impairing the stability or function of the native state. Overexpression of GroEL/ES suppressed the defects of tsf mutants at 17 sites in the coat protein, by improving folding efficiency rather than assembly efficiency or protein stability. Immunoprecipitation experiments demonstrated that GroEL interacted transiently with newly synthesized wild-type coat protein and that this interaction was prolonged by the tsf mutations. Folding defects of the tailspike polypeptide chains were not suppressed. A fraction of the tsf mutant tailspike chains bound to GroEL but were inefficiently discharged. The results suggest that 1) thermolabile folding intermediates are natural substrates of GroEL/ES; 2) although GroEL may bind such intermediates for many proteins, the chaperoning function is limited to a subset of substrate proteins; and 3) a key reason for the heat-shock response may be to stabilize thermolabile folding intermediates at elevated temperatures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)46878-0