Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP

Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions,. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which inc...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 388; no. 6643; pp. 693 - 697
Main Authors Gamblin, Steven J, Rittinger, Katrin, Walker, Philip A, Eccleston, John F, Nurmahomed, Kurshid, Owen, Darerca, Laue, Ernest, Smerdon, Stephen J
Format Journal Article
LanguageEnglish
Published London Nature Publishing 14.08.1997
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions,. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 105times,. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7 å resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit Giα1 (ref. 12), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/41805