Matrix metalloproteinases in pro-atherosclerotic arterial remodeling
Matrix metalloproteinases (MMPs) is a family of Zn2+ endopeptidases that process various components of the extracellular matrix. These enzymes are also involved in activation and inhibition of signaling cascades through proteolytic cleavage of surface receptors. Moreover, MMPs play a key role in tis...
Saved in:
Published in | Journal of molecular and cellular cardiology Vol. 123; pp. 159 - 167 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2828 1095-8584 1095-8584 |
DOI | 10.1016/j.yjmcc.2018.08.026 |
Cover
Summary: | Matrix metalloproteinases (MMPs) is a family of Zn2+ endopeptidases that process various components of the extracellular matrix. These enzymes are also involved in activation and inhibition of signaling cascades through proteolytic cleavage of surface receptors. Moreover, MMPs play a key role in tissue remodeling and and repair. Dysregulation of MMPs is observed in patholofgical conditions, including atherosclerosis, which is associated with hyperactivation of MMPs, aberrant tissue remodeling and neovascularization of the growing atherosclerotic plaques. This makes MMPs interesting therapeutic targets that can be employed for developing novel therapies to treat atherosclerosis and its complications. Currently, a growing number of synthetic MMP inhibitors is available. In this review, we will discuss the role of these enzymes in atherosclerosis pathology and the ways of their pothential therapeutic use.
•MMPs are Zn proteases that process the extracellular matrix components•MMPs are implicated in numerous human disease, including cancer and atherosclerosis•MMPs are involved in all stages of atherosclerotic plaque development, but their roles are not always defined•Few MMP inhibitors have been approved so far, but such drugs can prove useful to treat atherosclerosis•Novel MMP inhibitors should be selective to target certains MMPs and have better tolerability |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0022-2828 1095-8584 1095-8584 |
DOI: | 10.1016/j.yjmcc.2018.08.026 |