Study on Fire Behavior, Thermal Stability and Degradation Kinetics of Thiol-Ene with Poly(aminopropyl/phenyl)silsesquioxane

In this article, the flame retardant poly(aminopropyl/phenyl)silsesquioxane (PA) was incorporated into thiol-ene (TE), to obtain a flame-retardant thiol-ene (FRTE) composite. The cone calorimeter (CONE) measurement results showed that, compared with neat TE, the peak of heat release rate (PHRR) and...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 6; p. 1142
Main Author Wang, Jiangbo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the flame retardant poly(aminopropyl/phenyl)silsesquioxane (PA) was incorporated into thiol-ene (TE), to obtain a flame-retardant thiol-ene (FRTE) composite. The cone calorimeter (CONE) measurement results showed that, compared with neat TE, the peak of heat release rate (PHRR) and total heat release (THR) of FRTE have decreased by almost 23.7% and 14.5%, respectively. Thermogravimetric analysis (TGA) results further confirmed that the flame retardant PA could induce the initial thermal degradation of TE, and increased the amounts of residual char. Moreover, the activation energies of FRTE were calculated through the Kissinger and Flynn-Wall-Ozawa methods. Compared with the neat TE, the activation energies of FRTE were raised by the addition of PA. It indicated that the flame retardant PA promoted cross-linking reactions of TE, to form a compact char layer and retarded further the thermal degradation of the polymer matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14061142