Evaluation of different computational methods on 5-methylcytosine sites identification

Abstract 5-Methylcytosine (m5C) plays an extremely important role in the basic biochemical process. With the great increase of identified m5C sites in a wide variety of organisms, their epigenetic roles become largely unknown. Hence, accurate identification of m5C site is a key step in understanding...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 3; pp. 982 - 995
Main Authors Lv, Hao, Zhang, Zi-Mei, Li, Shi-Hao, Tan, Jiu-Xin, Chen, Wei, Lin, Hao
Format Journal Article
LanguageEnglish
Published England Oxford University Press 21.05.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract 5-Methylcytosine (m5C) plays an extremely important role in the basic biochemical process. With the great increase of identified m5C sites in a wide variety of organisms, their epigenetic roles become largely unknown. Hence, accurate identification of m5C site is a key step in understanding its biological functions. Over the past several years, more attentions have been paid on the identification of m5C sites in multiple species. In this work, we firstly summarized the current progresses in computational prediction of m5C sites and then constructed a more powerful and reliable model for identifying m5C sites. To train the model, we collected experimentally confirmed m5C data from Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Arabidopsis thaliana, and compared the performances of different feature extraction methods and classification algorithms for optimizing prediction model. Based on the optimal model, a novel predictor called iRNA-m5C was developed for the recognition of m5C sites. Finally, we critically evaluated the performance of iRNA-m5C and compared it with existing methods. The result showed that iRNA-m5C could produce the best prediction performance. We hope that this paper could provide a guide on the computational identification of m5C site and also anticipate that the proposed iRNA-m5C will become a powerful tool for large scale identification of m5C sites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1467-5463
1477-4054
1477-4054
DOI:10.1093/bib/bbz048