Effects of two surface acoustic wave sorting chips on particles multi-level sorting

Particle/cell sorting has great potential in medical diagnosis and chemical analysis. Two kinds of microfluidic sorting chips (sequential sorting chip and direct sorting chip) are designed, which combine hydraulic force and acoustic radiation force to achieve continuous sorting of multiple particles...

Full description

Saved in:
Bibliographic Details
Published inBiomedical microdevices Vol. 21; no. 3; pp. 59 - 15
Main Authors Liu, Guojun, He, Fang, Li, Yan, Zhao, Hong, Li, Xinbo, Tang, Huajie, Li, Zhiqiang, Yang, Zhigang, Zhang, Yanyan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Particle/cell sorting has great potential in medical diagnosis and chemical analysis. Two kinds of microfluidic sorting chips (sequential sorting chip and direct sorting chip) are designed, which combine hydraulic force and acoustic radiation force to achieve continuous sorting of multiple particles. Firstly, the optimal values of the angle (α) between the interdigital transducer (IDT) and the main channel, the peak-to-peak voltage (Vpp), the main flow velocity (Vmax) and the flow ratio (A) are determined by simulation and experiments, the related optimal parameters were obtained that the α = 15°, Vpp = 25 V, Vmax = 4 mm/s, flow ratio A 1  = 0.2, and A 2  = 0.5, respectively. Then, the corresponding sorting experiments were carried out using two kinds of sorting chips to sort the polystyrene (PS) particles with diameters of 1 μm, 5 μm, and 10 μm, and the sorting rate and purity of particles were calculated and analyzed. Experimental results show that the two kinds of sorting chips can achieve continuous sorting of multiple particles, and the sorting effect of sequential sorting chip (control flow ratio) is better than that of direct sorting chip. In addition, the sorting chips in our research have the advantages of simple structure, high sorting efficiency, and the ability to sort multiple particles, which can be applied in medical and chemical research fields, such as cell sorting and chemical analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1387-2176
1572-8781
DOI:10.1007/s10544-019-0419-4