Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors
To identify compounds with potent antitumor efficacy for various human cancers, we aimed to synthesize compounds that could inhibit c-mesenchymal epithelial transition factor (c-Met) and vascular endothelial growth factor receptor 2 (VEGFR2) kinases. We designed para-substituted inhibitors by using...
Saved in:
Published in | Bioorganic & medicinal chemistry Vol. 21; no. 24; pp. 7686 - 7698 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
OXFORD
Elsevier Ltd
15.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To identify compounds with potent antitumor efficacy for various human cancers, we aimed to synthesize compounds that could inhibit c-mesenchymal epithelial transition factor (c-Met) and vascular endothelial growth factor receptor 2 (VEGFR2) kinases. We designed para-substituted inhibitors by using co-crystal structural information from c-Met and VEGFR2 in complex with known inhibitors. This led to the identification of compounds 3a and 3b, which were capable of suppressing both c-Met and VEGFR2 kinase activities. Further optimization resulted in pyrazolone and pyridone derivatives, which could form intramolecular hydrogen bonds to enforce a rigid conformation, thereby producing potent inhibition. One compound of particular note was the imidazo[1,2-a]pyridine derivative (26) bearing a 6-methylpyridone ring, which strongly inhibited both c-Met and VEGFR2 enzyme activities (IC50=1.9, 2.2nM), as well as proliferation of c-Met-addicted MKN45 cells and VEGF-stimulated human umbilical vein endothelial cells (IC50=5.0, 1.8nM). Compound 26 exhibited dose-dependent antitumor efficacy in vivo in MKN45 (treated/control ratio [T/C]=4%, po, 5mg/kg, once-daily) and COLO205 (T/C=13%, po, 15mg/kg, once-daily) mouse xenograft models. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.bmc.2013.10.028 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2013.10.028 |