Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors

To identify compounds with potent antitumor efficacy for various human cancers, we aimed to synthesize compounds that could inhibit c-mesenchymal epithelial transition factor (c-Met) and vascular endothelial growth factor receptor 2 (VEGFR2) kinases. We designed para-substituted inhibitors by using...

Full description

Saved in:
Bibliographic Details
Published inBioorganic & medicinal chemistry Vol. 21; no. 24; pp. 7686 - 7698
Main Authors Matsumoto, Shigemitsu, Miyamoto, Naoki, Hirayama, Takaharu, Oki, Hideyuki, Okada, Kengo, Tawada, Michiko, Iwata, Hidehisa, Nakamura, Kazuhide, Yamasaki, Seiji, Miki, Hiroshi, Hori, Akira, Imamura, Shinichi
Format Journal Article
LanguageEnglish
Published OXFORD Elsevier Ltd 15.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To identify compounds with potent antitumor efficacy for various human cancers, we aimed to synthesize compounds that could inhibit c-mesenchymal epithelial transition factor (c-Met) and vascular endothelial growth factor receptor 2 (VEGFR2) kinases. We designed para-substituted inhibitors by using co-crystal structural information from c-Met and VEGFR2 in complex with known inhibitors. This led to the identification of compounds 3a and 3b, which were capable of suppressing both c-Met and VEGFR2 kinase activities. Further optimization resulted in pyrazolone and pyridone derivatives, which could form intramolecular hydrogen bonds to enforce a rigid conformation, thereby producing potent inhibition. One compound of particular note was the imidazo[1,2-a]pyridine derivative (26) bearing a 6-methylpyridone ring, which strongly inhibited both c-Met and VEGFR2 enzyme activities (IC50=1.9, 2.2nM), as well as proliferation of c-Met-addicted MKN45 cells and VEGF-stimulated human umbilical vein endothelial cells (IC50=5.0, 1.8nM). Compound 26 exhibited dose-dependent antitumor efficacy in vivo in MKN45 (treated/control ratio [T/C]=4%, po, 5mg/kg, once-daily) and COLO205 (T/C=13%, po, 15mg/kg, once-daily) mouse xenograft models.
Bibliography:http://dx.doi.org/10.1016/j.bmc.2013.10.028
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2013.10.028