Loss of stearoyl-CoA desaturase 2 disrupts inflammatory response in macrophages

Macrophages are innate immune cells that patrol tissues and are the first responders to detect infection. They orchestrate the host immune response in eliminating invading pathogens and the subsequent transition from inflammation to tissue repair. Macrophage dysfunction contributes to age-related pa...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 14; no. 4; p. e0092523
Main Authors Lin, Joseph B, Mora, Amy, Wang, Tzu Jui, Santeford, Andrea, Usmani, Darksha, Ligon, Marianne M, Mysorekar, Indira U, Apte, Rajendra S
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Macrophages are innate immune cells that patrol tissues and are the first responders to detect infection. They orchestrate the host immune response in eliminating invading pathogens and the subsequent transition from inflammation to tissue repair. Macrophage dysfunction contributes to age-related pathologies, including low-grade inflammation in advanced age that is termed "inflammaging." Our laboratory has previously identified that macrophage expression of a fatty acid desaturase, stearoyl-CoA desaturase 2 (SCD2), declines with age. Herein, we delineate the precise cellular effects of SCD2 deficiency in murine macrophages. We found that deletion of from macrophages dysregulated basal and bacterial lipopolysaccharide (LPS)-stimulated transcription of numerous inflammation-associated genes. Specifically, deletion of from macrophages decreased basal and LPS-induced expression of transcript that corresponded to decreased production of precursor IL1B protein and release of mature IL1B. Furthermore, we identified disruptions in autophagy and depletion of unsaturated cardiolipins in SCD2-deficient macrophages. To assess the functional relevance of SCD2 in the macrophage response to infection, we challenged SCD2-deficient macrophages with uropathogenic and found that there was impaired clearance of intracellular bacteria. This increased burden of intracellular bacteria was accompanied by increased release of pro-inflammatory cytokines IL6 and TNF but decreased IL1B. Taken together, these results indicate that macrophage expression of is necessary for maintaining the macrophage response to inflammatory stimuli. This link between fatty acid metabolism and fundamental macrophage effector functions may potentially be relevant to diverse age-related pathologies. IMPORTANCE Macrophages are immune cells that respond to infection, but their dysfunction is implicated in many age-related diseases. Recent evidence showed that macrophage expression of a fatty acid enzyme, stearoyl-CoA desaturase 2, declines in aged organisms. In this work, we characterize the effects when stearoyl-CoA desaturase 2 is deficient in macrophages. We identify aspects of the macrophage inflammatory response to infection that may be affected when expression of a key fatty acid enzyme is decreased, and these findings may provide cellular insight into how macrophages contribute to age-related diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ISSN:2150-7511
2150-7511
DOI:10.1128/mbio.00925-23