Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films
Polyethylene oxide (PEO) complexed with molecular iodine ( I 2 ) forming PEO/ I 2 complex composites stand‐free films were investigated using dielectric relaxation, X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometry, structural and morphological techniques. Scanning electron microscop...
Saved in:
Published in | Polymer bulletin (Berlin, Germany) Vol. 79; no. 6; pp. 3759 - 3778 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polyethylene oxide (PEO) complexed with molecular iodine (
I
2
) forming PEO/
I
2
complex composites stand‐free films were investigated using dielectric relaxation, X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometry, structural and morphological techniques. Scanning electron microscopy was used to monitor the variation in the surface morphology and the related roughness. 2D Energy-dispersive X-ray spectroscopy (EDX) measurements enabled to observe the distribution of iodine on the film surface. High resolution XPS measurements were used to define the iodine anion types and the metallic iodine existence, as well as the relevant concentrations based on the binding energies. The dielectric relaxation measurements were carried out over the frequency range from 0.1 to 10
7
Hz and temperature range from 155 to 330 K. Dielectric loss (ε′′) curves were fitted to the Havriliak–Negami (HN) model for one and/or two relaxation peaks (α and β), with and without the electrical conductivity contribution term, in order to deduce the relaxation time (τ) and the dielectric strengths (Δ
ε
), in addition to the electrical conductivities (
σ
). The temperature-dependent data of β- and σ- relaxations follow the law of Arrhenius thermal activation indicating the presence of typical glass-forming polymers. Δ
ε
of α-relaxation obeys the curvature pattern of Vogel-Tammann-Fulcher (VTF) thermal activation law. The electrical conductivity of the system increases 6000 folds by doping PEO with 5 wt% of iodine at the same temperature (293 K). |
---|---|
ISSN: | 0170-0839 1436-2449 |
DOI: | 10.1007/s00289-021-03593-1 |