High-performance, flexible thermoelectric generator based on bulk materials
Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper el...
Saved in:
Published in | Cell reports physical science Vol. 3; no. 3; p. 100780 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
16.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications.
[Display omitted]
•A mushroom-like f-TEG achieves high output power density on human skin•The copper electrodes also serve as heat concentrators and spreaders and spacers•An analytical model is developed to predict an f-TEG’s energy-harvesting performance
Xu et al. report an f-TEG featuring a mushroom-like structure that achieves high output power density on human skin without external heat sink via thermal design. The work provides an example of the design process of f-TEGs and paves the pathway toward scalable fabrication of low-cost and high-performance f-TEGs. |
---|---|
AbstractList | Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications. Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications. [Display omitted] •A mushroom-like f-TEG achieves high output power density on human skin•The copper electrodes also serve as heat concentrators and spreaders and spacers•An analytical model is developed to predict an f-TEG’s energy-harvesting performance Xu et al. report an f-TEG featuring a mushroom-like structure that achieves high output power density on human skin without external heat sink via thermal design. The work provides an example of the design process of f-TEGs and paves the pathway toward scalable fabrication of low-cost and high-performance f-TEGs. |
ArticleNumber | 100780 |
Author | Lin, Shaoting Zhou, Qing Jiang, Feng Zhang, Xinbo Xu, Qian Li, Qikai Liu, Weishu Li, Jun Zhu, Yongbin Zhang, Pengxiang Chen, Gang Han, Zhijia Deng, Biao Zhang, Lenan |
Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-2305-1375 surname: Xu fullname: Xu, Qian email: ritaqxu@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: Biao surname: Deng fullname: Deng, Biao organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 3 givenname: Lenan surname: Zhang fullname: Zhang, Lenan organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 4 givenname: Shaoting surname: Lin fullname: Lin, Shaoting organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 5 givenname: Zhijia surname: Han fullname: Han, Zhijia organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 6 givenname: Qing surname: Zhou fullname: Zhou, Qing organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 7 givenname: Jun surname: Li fullname: Li, Jun organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 8 givenname: Yongbin surname: Zhu fullname: Zhu, Yongbin organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 9 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 10 givenname: Qikai surname: Li fullname: Li, Qikai organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 11 givenname: Pengxiang surname: Zhang fullname: Zhang, Pengxiang organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 12 givenname: Xinbo surname: Zhang fullname: Zhang, Xinbo organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China – sequence: 13 givenname: Gang surname: Chen fullname: Chen, Gang email: gchen2@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 14 givenname: Weishu surname: Liu fullname: Liu, Weishu email: liuws@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China |
BookMark | eNp9kM9KxDAQh4MoqKsv4KkPYNck26YpeBHxHwpe9Bwm6WQ3a7dZplH07c26CuLB0wzDfD9mvkO2O8QBGTsRfCq4UGfL6buj9VRyKfOAN5rvsAOplCpnWlW7v_p9djyOS865rIXIewfs_jbMF-UayUdaweDwtPA9vgfbY5EWSKuIPbpEwRVzHJAgRSosjNgVcSjsa_9SrCAhBejHI7bnc8Hj7zphz9dXT5e35cPjzd3lxUPpKsFT6VBgpT14NeMttKL1mldSggLtW6yt0jMLuhbeV9go0QjeeactCqgbLWU7m7C7bW4XYWnWFFZAHyZCMF-DSHMDlILr0ciuUR69tNZWlW28tvmEWtbKg5Je65ylt1mO4jgSeuNCghTikAhCbwQ3G8dmaTaOzcax2TrOqPyD_pzyL3S-hTALegtIZnQBs_cuUPacPwj_4Z9HB5gM |
CitedBy_id | crossref_primary_10_1002_pssr_202200502 crossref_primary_10_1002_ece2_17 crossref_primary_10_1002_advs_202206397 crossref_primary_10_54227_mlab_20230003 crossref_primary_10_1002_gch2_202300023 crossref_primary_10_1016_j_pmatsci_2023_101184 crossref_primary_10_1021_acsapm_3c02908 crossref_primary_10_1007_s42247_024_00953_1 crossref_primary_10_1039_D4EE01150C crossref_primary_10_3390_en15093375 crossref_primary_10_1126_science_ads5868 crossref_primary_10_1039_D3EE01031G crossref_primary_10_3390_ma15124315 crossref_primary_10_1039_D4CS00361F crossref_primary_10_1039_D2TC02176E crossref_primary_10_1002_advs_202303695 crossref_primary_10_1038_s41467_024_52841_1 crossref_primary_10_1002_smll_202206865 crossref_primary_10_1021_acsaem_4c01794 crossref_primary_10_3390_ma17020420 crossref_primary_10_1016_j_xcrp_2022_100902 crossref_primary_10_1002_cnma_202200551 crossref_primary_10_1007_s11771_023_5257_0 crossref_primary_10_1002_adfm_202207903 crossref_primary_10_1002_cey2_541 crossref_primary_10_1002_adfm_202211281 crossref_primary_10_1002_aenm_202301252 crossref_primary_10_3390_en16104082 crossref_primary_10_1002_smll_202304599 |
Cites_doi | 10.1007/s11664-008-0638-6 10.1038/s41467-019-09707-8 10.1039/D0EE01640C 10.1038/nmat4251 10.1002/adma.201700070 10.1039/C6EE00456C 10.1016/j.enconman.2019.05.003 10.1016/j.nanoen.2016.09.011 10.1016/j.apenergy.2011.03.017 10.1038/s41560-017-0071-2 10.1016/j.enconman.2015.02.046 10.1039/C4EE03297G 10.1016/0022-3697(60)90094-9 10.1109/TCAPT.2009.2039934 10.1016/j.enconman.2015.05.005 10.1016/j.enconman.2013.11.029 10.1002/adma.201807916 10.1039/c3ta13456c 10.1088/0508-3443/9/10/307 10.1103/PhysRevLett.119.085501 10.1002/admt.201700256 10.1016/j.enconman.2017.06.087 10.1039/C6CS00149A 10.1016/j.apenergy.2014.04.088 10.1016/j.energy.2013.06.069 10.1016/0378-7753(92)80114-Q 10.1016/j.apmt.2018.07.004 10.1007/s11664-016-4905-7 10.1063/1.4807314 10.1002/aenm.202100920 10.1021/acsenergylett.7b01237 10.1002/admt.201800615 10.1016/j.xcrp.2021.100412 10.1039/C7EE03617E 10.1039/c2ee22838f 10.1016/j.apenergy.2018.02.062 10.1016/j.apenergy.2018.01.074 10.1039/c4ee00242c 10.1088/0964-1726/23/10/105002 10.1126/science.aaz5704 10.1002/aenm.201902842 10.1126/sciadv.aaw0536 10.1063/1.1289776 10.1126/sciadv.aau5849 10.1039/C7EE00447H |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.xcrp.2022.100780 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2666-3864 |
ExternalDocumentID | oai_doaj_org_article_2d76fef2bbb44b7f8b4105256fa62f88 10_1016_j_xcrp_2022_100780 S2666386422000479 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AAMRU AAXUO ACLIJ ADVLN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-ce1e48faf6309a919f80422a6a8f9e5b683ba851ff4e761710dfc8be1a5782293 |
IEDL.DBID | DOA |
ISSN | 2666-3864 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Tue Jul 01 03:20:28 EDT 2025 Sun Apr 06 06:54:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | wearable device power generation flexible thermoelectric generator thermal design |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-ce1e48faf6309a919f80422a6a8f9e5b683ba851ff4e761710dfc8be1a5782293 |
ORCID | 0000-0002-2305-1375 |
OpenAccessLink | https://doaj.org/article/2d76fef2bbb44b7f8b4105256fa62f88 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d76fef2bbb44b7f8b4105256fa62f88 crossref_citationtrail_10_1016_j_xcrp_2022_100780 crossref_primary_10_1016_j_xcrp_2022_100780 elsevier_sciencedirect_doi_10_1016_j_xcrp_2022_100780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-16 |
PublicationDateYYYYMMDD | 2022-03-16 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Cell reports physical science |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Nan, Kang, Li, Yu, Zhu, Wang, Dunn, Zhou, Xie, Agne (bib18) 2018; 4 Fabián-Mijangos, Min, Alvarez-Quintana (bib38) 2017; 148 Chen, Zhao, Liang (bib8) 2015; 8 Hong, Gu, Seo, Wang, Liu, Shirley Meng, Xu, Chen (bib11) 2019; 5 Allison, Andrew (bib17) 2019; 4 Wan, Gu, Dang, Itoh, Wang, Sasaki, Kondo, Koga, Yabuki, Snyder (bib3) 2015; 14 He, Schierning, Nielsch (bib23) 2018; 3 Kim, Lee, Choi, Kim, Yang, Lim, Lee, Cho (bib40) 2018; 214 Li, Aydemir, Morozov, Wood, An, Zhai, Zhang, Goddard, Snyder (bib44) 2017; 119 Oki, Suzuki (bib34) 2017; 46 Zhu, Shi, Wang, Wang, Yu, Wang, Deng, Xiao (bib41) 2021; 11 Yu, Murali, Choi, Ryu (bib7) 2012; 5 Kim, We, Cho (bib12) 2014; 7 Huang, Wang, Cheng, Lin (bib27) 2013; 59 Zhang, Liao, Tang, Gu, Ming, Qiu, Bai, Shi, Uher, Chen (bib33) 2017; 10 Kishore, Nozariasbmarz, Poudel, Sanghadasa, Priya (bib31) 2019; 10 Kroon, Mengistie, Kiefer, Hynynen, Ryan, Yu, Müller (bib9) 2016; 45 Liu, Yin, Zhang, Wang, Hou, Wu, Zhang, Chen, Li, Ji (bib13) 2021; 2 Kim, Kwon, Eom, Lee, Park, Jo, Park, Kim, Im, Lee (bib29) 2018; 3 Baranowski, Jeffrey Snyder, Toberer (bib39) 2013; 113 Kim, Kim, Lee, Kim, Kim (bib14) 2014; 23 Dun, Hewitt, Li, Xu, Schall, Lee, Jiang, Carroll (bib5) 2017; 29 Hodes (bib24) 2010; 33 Wang, Shi, Mei, Chen (bib16) 2018; 215 Min, Rowe (bib28) 1992; 38 Kim, Yang, Lee, Lee, Choi, Kim, Lim, Cho, Cho (bib15) 2018; 3 Ju, Ghoshal (bib21) 2000; 88 Fateh, Baker, Hall, Shi (bib25) 2014; 129 Wang, Yang, Shi, Shi, Chen, Dargusch, Zou, Chen (bib2) 2019; 31 Du, Xu, Paul, Eklund (bib1) 2018; 12 Shi, Mei, Yao, Wang, Liu, Chen (bib37) 2015; 97 Ali, Sahin, Yilbas (bib35) 2014; 78 Wan, Tian, Azizi, Huang, Wei, Sasai, Wasusate, Ishida, Koumoto (bib4) 2016; 30 Suarez, Nozariasbmarz, Vashaee, Öztürk (bib30) 2016; 9 Yamashita (bib22) 2011; 88 Wiese, Muldawer (bib43) 1960; 15 Dongxu, Zhongbao, Pou, Mazzoni, Rajoo, Romagnoli (bib26) 2019; 195 Zhu, Deng, Zhang, Kim, Jiang, Liu (bib32) 2020; 13 Liu, Wang, Wang, Wang, Joshi, Chen, Ren (bib45) 2013; 1 Leonov, Vullers (bib20) 2009; 38 Francombe (bib42) 1958; 9 Wang, Zhang, Geng, Yuan, Liu, Guo, Fang, Qiu, Wang (bib10) 2018; 11 Kanahashi, Pu, Takenobu (bib6) 2020; 10 Peng, Jeffrey Snyder (bib19) 2019; 366 Yilbas, Ali (bib36) 2015; 100 Liu (10.1016/j.xcrp.2022.100780_bib13) 2021; 2 Yilbas (10.1016/j.xcrp.2022.100780_bib36) 2015; 100 Kim (10.1016/j.xcrp.2022.100780_bib29) 2018; 3 Wiese (10.1016/j.xcrp.2022.100780_bib43) 1960; 15 Peng (10.1016/j.xcrp.2022.100780_bib19) 2019; 366 He (10.1016/j.xcrp.2022.100780_bib23) 2018; 3 Liu (10.1016/j.xcrp.2022.100780_bib45) 2013; 1 Kim (10.1016/j.xcrp.2022.100780_bib14) 2014; 23 Nan (10.1016/j.xcrp.2022.100780_bib18) 2018; 4 Kim (10.1016/j.xcrp.2022.100780_bib40) 2018; 214 Dun (10.1016/j.xcrp.2022.100780_bib5) 2017; 29 Kim (10.1016/j.xcrp.2022.100780_bib15) 2018; 3 Zhu (10.1016/j.xcrp.2022.100780_bib32) 2020; 13 Zhu (10.1016/j.xcrp.2022.100780_bib41) 2021; 11 Wang (10.1016/j.xcrp.2022.100780_bib10) 2018; 11 Baranowski (10.1016/j.xcrp.2022.100780_bib39) 2013; 113 Wang (10.1016/j.xcrp.2022.100780_bib16) 2018; 215 Kishore (10.1016/j.xcrp.2022.100780_bib31) 2019; 10 Du (10.1016/j.xcrp.2022.100780_bib1) 2018; 12 Allison (10.1016/j.xcrp.2022.100780_bib17) 2019; 4 Hodes (10.1016/j.xcrp.2022.100780_bib24) 2010; 33 Leonov (10.1016/j.xcrp.2022.100780_bib20) 2009; 38 Li (10.1016/j.xcrp.2022.100780_bib44) 2017; 119 Wang (10.1016/j.xcrp.2022.100780_bib2) 2019; 31 Kim (10.1016/j.xcrp.2022.100780_bib12) 2014; 7 Kanahashi (10.1016/j.xcrp.2022.100780_bib6) 2020; 10 Yu (10.1016/j.xcrp.2022.100780_bib7) 2012; 5 Chen (10.1016/j.xcrp.2022.100780_bib8) 2015; 8 Dongxu (10.1016/j.xcrp.2022.100780_bib26) 2019; 195 Fateh (10.1016/j.xcrp.2022.100780_bib25) 2014; 129 Wan (10.1016/j.xcrp.2022.100780_bib4) 2016; 30 Zhang (10.1016/j.xcrp.2022.100780_bib33) 2017; 10 Shi (10.1016/j.xcrp.2022.100780_bib37) 2015; 97 Fabián-Mijangos (10.1016/j.xcrp.2022.100780_bib38) 2017; 148 Wan (10.1016/j.xcrp.2022.100780_bib3) 2015; 14 Min (10.1016/j.xcrp.2022.100780_bib28) 1992; 38 Oki (10.1016/j.xcrp.2022.100780_bib34) 2017; 46 Kroon (10.1016/j.xcrp.2022.100780_bib9) 2016; 45 Yamashita (10.1016/j.xcrp.2022.100780_bib22) 2011; 88 Suarez (10.1016/j.xcrp.2022.100780_bib30) 2016; 9 Hong (10.1016/j.xcrp.2022.100780_bib11) 2019; 5 Ju (10.1016/j.xcrp.2022.100780_bib21) 2000; 88 Ali (10.1016/j.xcrp.2022.100780_bib35) 2014; 78 Francombe (10.1016/j.xcrp.2022.100780_bib42) 1958; 9 Huang (10.1016/j.xcrp.2022.100780_bib27) 2013; 59 |
References_xml | – volume: 33 start-page: 307 year: 2010 end-page: 318 ident: bib24 article-title: Optimal pellet geometries for thermoelectric power generation publication-title: IEEE Trans. Components Packag. Technol. – volume: 10 start-page: 1 year: 2019 end-page: 13 ident: bib31 article-title: Ultra-high performance wearable thermoelectric coolers with less materials publication-title: Nat. Commun. – volume: 23 start-page: 105002 year: 2014 ident: bib14 article-title: Wearable thermoelectric generator for harvesting human body heat energy publication-title: Smart Mater. Struct. – volume: 97 start-page: 1 year: 2015 end-page: 6 ident: bib37 article-title: Nominal power density analysis of thermoelectric pins with non-constant cross sections publication-title: Energy Convers. Manag. – volume: 38 start-page: 1491 year: 2009 end-page: 1498 ident: bib20 article-title: Wearable thermoelectric generators for body-powered devices publication-title: J. Electron. Mater. – volume: 88 start-page: 3022 year: 2011 end-page: 3029 ident: bib22 article-title: Effect of interface layer on the cooling performance of a single thermoelement publication-title: Appl. Energy – volume: 214 start-page: 131 year: 2018 end-page: 138 ident: bib40 article-title: Structural design of a flexible thermoelectric power generator for wearable applications publication-title: Appl. Energy – volume: 5 start-page: 9481 year: 2012 end-page: 9486 ident: bib7 article-title: Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes publication-title: Energy Environ. Sci. – volume: 59 start-page: 689 year: 2013 end-page: 697 ident: bib27 article-title: Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method publication-title: Energy – volume: 14 start-page: 622 year: 2015 end-page: 627 ident: bib3 article-title: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS publication-title: Nat. Mater. – volume: 195 start-page: 236 year: 2019 end-page: 243 ident: bib26 article-title: Geometry optimization of thermoelectric modules: simulation and experimental study publication-title: Energy Convers. Manag. – volume: 129 start-page: 373 year: 2014 end-page: 383 ident: bib25 article-title: High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space publication-title: Appl. Energy – volume: 9 start-page: 415 year: 1958 end-page: 417 ident: bib42 article-title: Structure-cell data and expansion coefficients of bismuth telluride publication-title: Br. J. Appl. Phys. – volume: 5 start-page: eaaw0536 year: 2019 ident: bib11 article-title: Wearable thermoelectrics for personalized thermoregulation publication-title: Sci. Adv. – volume: 113 start-page: 204904 year: 2013 ident: bib39 article-title: Effective thermal conductivity in thermoelectric materials publication-title: J. Appl. Phys. – volume: 11 start-page: 1307 year: 2018 end-page: 1317 ident: bib10 article-title: Solution-printable fullerene/TiS publication-title: Energy Environ. Sci. – volume: 12 start-page: 366 year: 2018 end-page: 388 ident: bib1 article-title: Flexible thermoelectric materials and devices publication-title: Appl. Mater. Today – volume: 366 start-page: 690 year: 2019 end-page: 691 ident: bib19 article-title: A figure of merit for flexibility publication-title: Science. – volume: 13 start-page: 3514 year: 2020 end-page: 3526 ident: bib32 article-title: System efficiency and power: the bridge between the device and system of a thermoelectric power generator publication-title: Energy Environ. Sci. – volume: 3 start-page: 1700256 year: 2018 ident: bib23 article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization publication-title: Adv. Mater. Technol. – volume: 30 start-page: 840 year: 2016 end-page: 845 ident: bib4 article-title: Flexible thermoelectric foil for wearable energy harvesting publication-title: Nano Energy – volume: 9 start-page: 2099 year: 2016 end-page: 2113 ident: bib30 article-title: Designing thermoelectric generators for self-powered wearable electronics publication-title: Energy Environ. Sci. – volume: 215 start-page: 690 year: 2018 end-page: 698 ident: bib16 article-title: Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer publication-title: Appl. Energy – volume: 45 start-page: 6147 year: 2016 end-page: 6164 ident: bib9 article-title: Thermoelectric plastics: from design to synthesis, processing and structure-property relationships publication-title: Chem. Soc. Rev. – volume: 31 start-page: 1807916 year: 2019 ident: bib2 article-title: Flexible thermoelectric materials and generators: challenges and innovations publication-title: Adv. Mater. – volume: 10 start-page: 956 year: 2017 end-page: 963 ident: bib33 article-title: Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration publication-title: Energy Environ. Sci. – volume: 3 start-page: 501 year: 2018 end-page: 507 ident: bib15 article-title: Self-powered wearable electrocardiography using a wearable thermoelectric power generator publication-title: ACS Energy Lett. – volume: 2 start-page: 100412 year: 2021 ident: bib13 article-title: A wearable real-time power supply with a Mg publication-title: Cell Rep. Phys. Sci. – volume: 3 start-page: 301 year: 2018 end-page: 309 ident: bib29 article-title: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi publication-title: Nat. Energy – volume: 100 start-page: 138 year: 2015 end-page: 146 ident: bib36 article-title: Thermoelectric generator performance analysis: influence of pin tapering on the first and second law efficiencies publication-title: Energy Convers. Manag. – volume: 10 start-page: 1902842 year: 2020 ident: bib6 article-title: 2D materials for large-area flexible thermoelectric devices publication-title: Adv. Energy Mater. – volume: 8 start-page: 401 year: 2015 end-page: 422 ident: bib8 article-title: Solution processed organic thermoelectrics: towards flexible thermoelectric modules publication-title: Energy Environ. Sci. – volume: 46 start-page: 2691 year: 2017 end-page: 2696 ident: bib34 article-title: Performance simulation of a flat-plate thermoelectric module consisting of square truncated pyramid elements publication-title: J. Electron. Mater. – volume: 38 start-page: 253 year: 1992 end-page: 259 ident: bib28 article-title: Optimisation of thermoelectric module geometry for “waste heat” electric power generation publication-title: J. Power Sourc. – volume: 4 start-page: 1800615 year: 2019 ident: bib17 article-title: A wearable all-fabric thermoelectric generator publication-title: Adv. Mater. Technol. – volume: 11 start-page: 2100920 year: 2021 ident: bib41 article-title: Recyclable, healable, and stretchable high-power thermoelectric generator publication-title: Adv. Energy Mater. – volume: 1 start-page: 13093 year: 2013 end-page: 13100 ident: bib45 article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi publication-title: J. Mater. Chem. A – volume: 4 start-page: eaau5849 year: 2018 ident: bib18 article-title: Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices publication-title: Sci. Adv. – volume: 15 start-page: 13 year: 1960 end-page: 16 ident: bib43 article-title: Lattice constants of Bi publication-title: J. Phys. Chem. Sol. – volume: 88 start-page: 4135 year: 2000 end-page: 4139 ident: bib21 article-title: Study of interface effects in thermoelectric microrefrigerators publication-title: J. Appl. Phys. – volume: 119 start-page: 085501 year: 2017 ident: bib44 article-title: Superstrengthening Bi publication-title: Phys. Rev. Lett. – volume: 29 start-page: 1700070 year: 2017 ident: bib5 article-title: 2D chalcogenide nanoplate Assemblies for thermoelectric applications publication-title: Adv. Mater. – volume: 78 start-page: 634 year: 2014 end-page: 640 ident: bib35 article-title: Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins publication-title: Energy Convers. Manag. – volume: 7 start-page: 1959 year: 2014 end-page: 1965 ident: bib12 article-title: A wearable thermoelectric generator fabricated on a glass fabric publication-title: Energy Environ. Sci. – volume: 148 start-page: 1372 year: 2017 end-page: 1381 ident: bib38 article-title: Enhanced performance thermoelectric module having asymmetrical legs publication-title: Energy Convers. Manag. – volume: 38 start-page: 1491 year: 2009 ident: 10.1016/j.xcrp.2022.100780_bib20 article-title: Wearable thermoelectric generators for body-powered devices publication-title: J. Electron. Mater. doi: 10.1007/s11664-008-0638-6 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib31 article-title: Ultra-high performance wearable thermoelectric coolers with less materials publication-title: Nat. Commun. doi: 10.1038/s41467-019-09707-8 – volume: 13 start-page: 3514 year: 2020 ident: 10.1016/j.xcrp.2022.100780_bib32 article-title: System efficiency and power: the bridge between the device and system of a thermoelectric power generator publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01640C – volume: 14 start-page: 622 year: 2015 ident: 10.1016/j.xcrp.2022.100780_bib3 article-title: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2 publication-title: Nat. Mater. doi: 10.1038/nmat4251 – volume: 29 start-page: 1700070 year: 2017 ident: 10.1016/j.xcrp.2022.100780_bib5 article-title: 2D chalcogenide nanoplate Assemblies for thermoelectric applications publication-title: Adv. Mater. doi: 10.1002/adma.201700070 – volume: 9 start-page: 2099 year: 2016 ident: 10.1016/j.xcrp.2022.100780_bib30 article-title: Designing thermoelectric generators for self-powered wearable electronics publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00456C – volume: 195 start-page: 236 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib26 article-title: Geometry optimization of thermoelectric modules: simulation and experimental study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.05.003 – volume: 30 start-page: 840 year: 2016 ident: 10.1016/j.xcrp.2022.100780_bib4 article-title: Flexible thermoelectric foil for wearable energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.011 – volume: 88 start-page: 3022 year: 2011 ident: 10.1016/j.xcrp.2022.100780_bib22 article-title: Effect of interface layer on the cooling performance of a single thermoelement publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.017 – volume: 3 start-page: 301 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib29 article-title: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks publication-title: Nat. Energy doi: 10.1038/s41560-017-0071-2 – volume: 97 start-page: 1 year: 2015 ident: 10.1016/j.xcrp.2022.100780_bib37 article-title: Nominal power density analysis of thermoelectric pins with non-constant cross sections publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.02.046 – volume: 8 start-page: 401 year: 2015 ident: 10.1016/j.xcrp.2022.100780_bib8 article-title: Solution processed organic thermoelectrics: towards flexible thermoelectric modules publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03297G – volume: 15 start-page: 13 year: 1960 ident: 10.1016/j.xcrp.2022.100780_bib43 article-title: Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys publication-title: J. Phys. Chem. Sol. doi: 10.1016/0022-3697(60)90094-9 – volume: 33 start-page: 307 year: 2010 ident: 10.1016/j.xcrp.2022.100780_bib24 article-title: Optimal pellet geometries for thermoelectric power generation publication-title: IEEE Trans. Components Packag. Technol. doi: 10.1109/TCAPT.2009.2039934 – volume: 100 start-page: 138 year: 2015 ident: 10.1016/j.xcrp.2022.100780_bib36 article-title: Thermoelectric generator performance analysis: influence of pin tapering on the first and second law efficiencies publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.005 – volume: 78 start-page: 634 year: 2014 ident: 10.1016/j.xcrp.2022.100780_bib35 article-title: Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.029 – volume: 31 start-page: 1807916 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib2 article-title: Flexible thermoelectric materials and generators: challenges and innovations publication-title: Adv. Mater. doi: 10.1002/adma.201807916 – volume: 1 start-page: 13093 year: 2013 ident: 10.1016/j.xcrp.2022.100780_bib45 article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13456c – volume: 9 start-page: 415 year: 1958 ident: 10.1016/j.xcrp.2022.100780_bib42 article-title: Structure-cell data and expansion coefficients of bismuth telluride publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/9/10/307 – volume: 119 start-page: 085501 year: 2017 ident: 10.1016/j.xcrp.2022.100780_bib44 article-title: Superstrengthening Bi2Te3 through nanotwinning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.085501 – volume: 3 start-page: 1700256 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib23 article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700256 – volume: 148 start-page: 1372 year: 2017 ident: 10.1016/j.xcrp.2022.100780_bib38 article-title: Enhanced performance thermoelectric module having asymmetrical legs publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.06.087 – volume: 45 start-page: 6147 year: 2016 ident: 10.1016/j.xcrp.2022.100780_bib9 article-title: Thermoelectric plastics: from design to synthesis, processing and structure-property relationships publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00149A – volume: 129 start-page: 373 year: 2014 ident: 10.1016/j.xcrp.2022.100780_bib25 article-title: High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.088 – volume: 59 start-page: 689 year: 2013 ident: 10.1016/j.xcrp.2022.100780_bib27 article-title: Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method publication-title: Energy doi: 10.1016/j.energy.2013.06.069 – volume: 38 start-page: 253 year: 1992 ident: 10.1016/j.xcrp.2022.100780_bib28 article-title: Optimisation of thermoelectric module geometry for “waste heat” electric power generation publication-title: J. Power Sourc. doi: 10.1016/0378-7753(92)80114-Q – volume: 12 start-page: 366 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib1 article-title: Flexible thermoelectric materials and devices publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.07.004 – volume: 46 start-page: 2691 year: 2017 ident: 10.1016/j.xcrp.2022.100780_bib34 article-title: Performance simulation of a flat-plate thermoelectric module consisting of square truncated pyramid elements publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-4905-7 – volume: 113 start-page: 204904 year: 2013 ident: 10.1016/j.xcrp.2022.100780_bib39 article-title: Effective thermal conductivity in thermoelectric materials publication-title: J. Appl. Phys. doi: 10.1063/1.4807314 – volume: 11 start-page: 2100920 year: 2021 ident: 10.1016/j.xcrp.2022.100780_bib41 article-title: Recyclable, healable, and stretchable high-power thermoelectric generator publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100920 – volume: 3 start-page: 501 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib15 article-title: Self-powered wearable electrocardiography using a wearable thermoelectric power generator publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01237 – volume: 4 start-page: 1800615 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib17 article-title: A wearable all-fabric thermoelectric generator publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800615 – volume: 2 start-page: 100412 year: 2021 ident: 10.1016/j.xcrp.2022.100780_bib13 article-title: A wearable real-time power supply with a Mg3Bi2-based thermoelectric module publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100412 – volume: 11 start-page: 1307 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib10 article-title: Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03617E – volume: 5 start-page: 9481 year: 2012 ident: 10.1016/j.xcrp.2022.100780_bib7 article-title: Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22838f – volume: 215 start-page: 690 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib16 article-title: Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.062 – volume: 214 start-page: 131 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib40 article-title: Structural design of a flexible thermoelectric power generator for wearable applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.01.074 – volume: 7 start-page: 1959 year: 2014 ident: 10.1016/j.xcrp.2022.100780_bib12 article-title: A wearable thermoelectric generator fabricated on a glass fabric publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00242c – volume: 23 start-page: 105002 year: 2014 ident: 10.1016/j.xcrp.2022.100780_bib14 article-title: Wearable thermoelectric generator for harvesting human body heat energy publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/10/105002 – volume: 366 start-page: 690 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib19 article-title: A figure of merit for flexibility publication-title: Science. doi: 10.1126/science.aaz5704 – volume: 10 start-page: 1902842 year: 2020 ident: 10.1016/j.xcrp.2022.100780_bib6 article-title: 2D materials for large-area flexible thermoelectric devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902842 – volume: 5 start-page: eaaw0536 year: 2019 ident: 10.1016/j.xcrp.2022.100780_bib11 article-title: Wearable thermoelectrics for personalized thermoregulation publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw0536 – volume: 88 start-page: 4135 year: 2000 ident: 10.1016/j.xcrp.2022.100780_bib21 article-title: Study of interface effects in thermoelectric microrefrigerators publication-title: J. Appl. Phys. doi: 10.1063/1.1289776 – volume: 4 start-page: eaau5849 year: 2018 ident: 10.1016/j.xcrp.2022.100780_bib18 article-title: Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices publication-title: Sci. Adv. doi: 10.1126/sciadv.aau5849 – volume: 10 start-page: 956 year: 2017 ident: 10.1016/j.xcrp.2022.100780_bib33 article-title: Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00447H |
SSID | ssj0002511780 |
Score | 2.385915 |
Snippet | Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100780 |
SubjectTerms | flexible thermoelectric generator power generation thermal design wearable device |
Title | High-performance, flexible thermoelectric generator based on bulk materials |
URI | https://dx.doi.org/10.1016/j.xcrp.2022.100780 https://doaj.org/article/2d76fef2bbb44b7f8b4105256fa62f88 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYjykgcGEETk4TjOCIiqApWJSt2i2PGhQmkraCUmfjt3dloylYUlQ-RH9Pmc77N0_o6xsxQSUSHtBibMbCBARLjnhA7CWKdWAmpiZ6XUf5K9gXgYpsNGqS_KCfP2wB6467jKJFiItdZC6AyUpsREJGooZQzKXfNFzmscpugfTMI5c2XTkIBkkCgp6hszPrnryzizyjh2WQLkCdlgJWfe3yCnBuF0t9lWrRT5jf_CNtuwkx3WrvfiJz-vDaMvdtkjJWsEs98rAFccyOdSjy0nffc-9cVuRoa_uE54zuZEXxWfTrhejN846lYfints0L1_vusFdZGEwCAQ88DYyAoFJcgkzMs8ykGRrVcpSwW5TbVUiS5RVgEIm6FcicIKjNI2KsnIHsl-n7Um04k9YByMJcKP4lCQbaDVJsG-AlQlSJmoDouWIBWmdhCnQhbjYpkq9loQsAUBW3hgO-xy1Wfm_TPWtr4l7FctyfvavcCIKOqIKP6KiA5LlytX1DLCywMcarRm8sP_mPyIbdKQlKUWyWPWmn8s7AnKlrk-dRGKz_73_Q96--jt |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance%2C+flexible+thermoelectric+generator+based+on+bulk+materials&rft.jtitle=Cell+reports+physical+science&rft.au=Xu%2C+Qian&rft.au=Deng%2C+Biao&rft.au=Zhang%2C+Lenan&rft.au=Lin%2C+Shaoting&rft.date=2022-03-16&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=3&rft.issue=3&rft.spage=100780&rft_id=info:doi/10.1016%2Fj.xcrp.2022.100780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xcrp_2022_100780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon |