High-performance, flexible thermoelectric generator based on bulk materials

Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper el...

Full description

Saved in:
Bibliographic Details
Published inCell reports physical science Vol. 3; no. 3; p. 100780
Main Authors Xu, Qian, Deng, Biao, Zhang, Lenan, Lin, Shaoting, Han, Zhijia, Zhou, Qing, Li, Jun, Zhu, Yongbin, Jiang, Feng, Li, Qikai, Zhang, Pengxiang, Zhang, Xinbo, Chen, Gang, Liu, Weishu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 16.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications. [Display omitted] •A mushroom-like f-TEG achieves high output power density on human skin•The copper electrodes also serve as heat concentrators and spreaders and spacers•An analytical model is developed to predict an f-TEG’s energy-harvesting performance Xu et al. report an f-TEG featuring a mushroom-like structure that achieves high output power density on human skin without external heat sink via thermal design. The work provides an example of the design process of f-TEGs and paves the pathway toward scalable fabrication of low-cost and high-performance f-TEGs.
AbstractList Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications.
Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output power density of conventional f-TEGs limit their applications. Here, we present a bulk-material-based f-TEG featuring multifunctional copper electrodes for heat concentration and dissipation and fabrics for comfort and heat-leakage reduction. When worn on the forehead, our f-TEG’s maximum output power density (based on the device’s area) reaches 48 μW/cm2 at a wind speed of 2 m/s and an ambient temperature of 15°C. A light-emitting diode (LED) powered by our f-TEG headband with 100 pairs of thermoelectric pillars can illuminate a paper for reading in a dark room at 17.5°C without an external heat sink or forced convection at the cold side. This work provides a general design approach for high-performance f-TEGs at a low cost. The device-level perspectives fill the critical knowledge gap between state-of-the-art material innovations and practical thermoelectric applications. [Display omitted] •A mushroom-like f-TEG achieves high output power density on human skin•The copper electrodes also serve as heat concentrators and spreaders and spacers•An analytical model is developed to predict an f-TEG’s energy-harvesting performance Xu et al. report an f-TEG featuring a mushroom-like structure that achieves high output power density on human skin without external heat sink via thermal design. The work provides an example of the design process of f-TEGs and paves the pathway toward scalable fabrication of low-cost and high-performance f-TEGs.
ArticleNumber 100780
Author Lin, Shaoting
Zhou, Qing
Jiang, Feng
Zhang, Xinbo
Xu, Qian
Li, Qikai
Liu, Weishu
Li, Jun
Zhu, Yongbin
Zhang, Pengxiang
Chen, Gang
Han, Zhijia
Deng, Biao
Zhang, Lenan
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-2305-1375
  surname: Xu
  fullname: Xu, Qian
  email: ritaqxu@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Biao
  surname: Deng
  fullname: Deng, Biao
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 3
  givenname: Lenan
  surname: Zhang
  fullname: Zhang, Lenan
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Shaoting
  surname: Lin
  fullname: Lin, Shaoting
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 5
  givenname: Zhijia
  surname: Han
  fullname: Han, Zhijia
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 6
  givenname: Qing
  surname: Zhou
  fullname: Zhou, Qing
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 7
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 8
  givenname: Yongbin
  surname: Zhu
  fullname: Zhu, Yongbin
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 9
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 10
  givenname: Qikai
  surname: Li
  fullname: Li, Qikai
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 11
  givenname: Pengxiang
  surname: Zhang
  fullname: Zhang, Pengxiang
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 12
  givenname: Xinbo
  surname: Zhang
  fullname: Zhang, Xinbo
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
– sequence: 13
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  email: gchen2@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 14
  givenname: Weishu
  surname: Liu
  fullname: Liu, Weishu
  email: liuws@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, P.R. China
BookMark eNp9kM9KxDAQh4MoqKsv4KkPYNck26YpeBHxHwpe9Bwm6WQ3a7dZplH07c26CuLB0wzDfD9mvkO2O8QBGTsRfCq4UGfL6buj9VRyKfOAN5rvsAOplCpnWlW7v_p9djyOS865rIXIewfs_jbMF-UayUdaweDwtPA9vgfbY5EWSKuIPbpEwRVzHJAgRSosjNgVcSjsa_9SrCAhBejHI7bnc8Hj7zphz9dXT5e35cPjzd3lxUPpKsFT6VBgpT14NeMttKL1mldSggLtW6yt0jMLuhbeV9go0QjeeactCqgbLWU7m7C7bW4XYWnWFFZAHyZCMF-DSHMDlILr0ciuUR69tNZWlW28tvmEWtbKg5Je65ylt1mO4jgSeuNCghTikAhCbwQ3G8dmaTaOzcax2TrOqPyD_pzyL3S-hTALegtIZnQBs_cuUPacPwj_4Z9HB5gM
CitedBy_id crossref_primary_10_1002_pssr_202200502
crossref_primary_10_1002_ece2_17
crossref_primary_10_1002_advs_202206397
crossref_primary_10_54227_mlab_20230003
crossref_primary_10_1002_gch2_202300023
crossref_primary_10_1016_j_pmatsci_2023_101184
crossref_primary_10_1021_acsapm_3c02908
crossref_primary_10_1007_s42247_024_00953_1
crossref_primary_10_1039_D4EE01150C
crossref_primary_10_3390_en15093375
crossref_primary_10_1126_science_ads5868
crossref_primary_10_1039_D3EE01031G
crossref_primary_10_3390_ma15124315
crossref_primary_10_1039_D4CS00361F
crossref_primary_10_1039_D2TC02176E
crossref_primary_10_1002_advs_202303695
crossref_primary_10_1038_s41467_024_52841_1
crossref_primary_10_1002_smll_202206865
crossref_primary_10_1021_acsaem_4c01794
crossref_primary_10_3390_ma17020420
crossref_primary_10_1016_j_xcrp_2022_100902
crossref_primary_10_1002_cnma_202200551
crossref_primary_10_1007_s11771_023_5257_0
crossref_primary_10_1002_adfm_202207903
crossref_primary_10_1002_cey2_541
crossref_primary_10_1002_adfm_202211281
crossref_primary_10_1002_aenm_202301252
crossref_primary_10_3390_en16104082
crossref_primary_10_1002_smll_202304599
Cites_doi 10.1007/s11664-008-0638-6
10.1038/s41467-019-09707-8
10.1039/D0EE01640C
10.1038/nmat4251
10.1002/adma.201700070
10.1039/C6EE00456C
10.1016/j.enconman.2019.05.003
10.1016/j.nanoen.2016.09.011
10.1016/j.apenergy.2011.03.017
10.1038/s41560-017-0071-2
10.1016/j.enconman.2015.02.046
10.1039/C4EE03297G
10.1016/0022-3697(60)90094-9
10.1109/TCAPT.2009.2039934
10.1016/j.enconman.2015.05.005
10.1016/j.enconman.2013.11.029
10.1002/adma.201807916
10.1039/c3ta13456c
10.1088/0508-3443/9/10/307
10.1103/PhysRevLett.119.085501
10.1002/admt.201700256
10.1016/j.enconman.2017.06.087
10.1039/C6CS00149A
10.1016/j.apenergy.2014.04.088
10.1016/j.energy.2013.06.069
10.1016/0378-7753(92)80114-Q
10.1016/j.apmt.2018.07.004
10.1007/s11664-016-4905-7
10.1063/1.4807314
10.1002/aenm.202100920
10.1021/acsenergylett.7b01237
10.1002/admt.201800615
10.1016/j.xcrp.2021.100412
10.1039/C7EE03617E
10.1039/c2ee22838f
10.1016/j.apenergy.2018.02.062
10.1016/j.apenergy.2018.01.074
10.1039/c4ee00242c
10.1088/0964-1726/23/10/105002
10.1126/science.aaz5704
10.1002/aenm.201902842
10.1126/sciadv.aaw0536
10.1063/1.1289776
10.1126/sciadv.aau5849
10.1039/C7EE00447H
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.xcrp.2022.100780
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2666-3864
ExternalDocumentID oai_doaj_org_article_2d76fef2bbb44b7f8b4105256fa62f88
10_1016_j_xcrp_2022_100780
S2666386422000479
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AAMRU
AAXUO
ACLIJ
ADVLN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-ce1e48faf6309a919f80422a6a8f9e5b683ba851ff4e761710dfc8be1a5782293
IEDL.DBID DOA
ISSN 2666-3864
IngestDate Wed Aug 27 01:28:52 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
Tue Jul 01 03:20:28 EDT 2025
Sun Apr 06 06:54:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords wearable device
power generation
flexible thermoelectric generator
thermal design
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-ce1e48faf6309a919f80422a6a8f9e5b683ba851ff4e761710dfc8be1a5782293
ORCID 0000-0002-2305-1375
OpenAccessLink https://doaj.org/article/2d76fef2bbb44b7f8b4105256fa62f88
ParticipantIDs doaj_primary_oai_doaj_org_article_2d76fef2bbb44b7f8b4105256fa62f88
crossref_citationtrail_10_1016_j_xcrp_2022_100780
crossref_primary_10_1016_j_xcrp_2022_100780
elsevier_sciencedirect_doi_10_1016_j_xcrp_2022_100780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-16
PublicationDateYYYYMMDD 2022-03-16
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-16
  day: 16
PublicationDecade 2020
PublicationTitle Cell reports physical science
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nan, Kang, Li, Yu, Zhu, Wang, Dunn, Zhou, Xie, Agne (bib18) 2018; 4
Fabián-Mijangos, Min, Alvarez-Quintana (bib38) 2017; 148
Chen, Zhao, Liang (bib8) 2015; 8
Hong, Gu, Seo, Wang, Liu, Shirley Meng, Xu, Chen (bib11) 2019; 5
Allison, Andrew (bib17) 2019; 4
Wan, Gu, Dang, Itoh, Wang, Sasaki, Kondo, Koga, Yabuki, Snyder (bib3) 2015; 14
He, Schierning, Nielsch (bib23) 2018; 3
Kim, Lee, Choi, Kim, Yang, Lim, Lee, Cho (bib40) 2018; 214
Li, Aydemir, Morozov, Wood, An, Zhai, Zhang, Goddard, Snyder (bib44) 2017; 119
Oki, Suzuki (bib34) 2017; 46
Zhu, Shi, Wang, Wang, Yu, Wang, Deng, Xiao (bib41) 2021; 11
Yu, Murali, Choi, Ryu (bib7) 2012; 5
Kim, We, Cho (bib12) 2014; 7
Huang, Wang, Cheng, Lin (bib27) 2013; 59
Zhang, Liao, Tang, Gu, Ming, Qiu, Bai, Shi, Uher, Chen (bib33) 2017; 10
Kishore, Nozariasbmarz, Poudel, Sanghadasa, Priya (bib31) 2019; 10
Kroon, Mengistie, Kiefer, Hynynen, Ryan, Yu, Müller (bib9) 2016; 45
Liu, Yin, Zhang, Wang, Hou, Wu, Zhang, Chen, Li, Ji (bib13) 2021; 2
Kim, Kwon, Eom, Lee, Park, Jo, Park, Kim, Im, Lee (bib29) 2018; 3
Baranowski, Jeffrey Snyder, Toberer (bib39) 2013; 113
Kim, Kim, Lee, Kim, Kim (bib14) 2014; 23
Dun, Hewitt, Li, Xu, Schall, Lee, Jiang, Carroll (bib5) 2017; 29
Hodes (bib24) 2010; 33
Wang, Shi, Mei, Chen (bib16) 2018; 215
Min, Rowe (bib28) 1992; 38
Kim, Yang, Lee, Lee, Choi, Kim, Lim, Cho, Cho (bib15) 2018; 3
Ju, Ghoshal (bib21) 2000; 88
Fateh, Baker, Hall, Shi (bib25) 2014; 129
Wang, Yang, Shi, Shi, Chen, Dargusch, Zou, Chen (bib2) 2019; 31
Du, Xu, Paul, Eklund (bib1) 2018; 12
Shi, Mei, Yao, Wang, Liu, Chen (bib37) 2015; 97
Ali, Sahin, Yilbas (bib35) 2014; 78
Wan, Tian, Azizi, Huang, Wei, Sasai, Wasusate, Ishida, Koumoto (bib4) 2016; 30
Suarez, Nozariasbmarz, Vashaee, Öztürk (bib30) 2016; 9
Yamashita (bib22) 2011; 88
Wiese, Muldawer (bib43) 1960; 15
Dongxu, Zhongbao, Pou, Mazzoni, Rajoo, Romagnoli (bib26) 2019; 195
Zhu, Deng, Zhang, Kim, Jiang, Liu (bib32) 2020; 13
Liu, Wang, Wang, Wang, Joshi, Chen, Ren (bib45) 2013; 1
Leonov, Vullers (bib20) 2009; 38
Francombe (bib42) 1958; 9
Wang, Zhang, Geng, Yuan, Liu, Guo, Fang, Qiu, Wang (bib10) 2018; 11
Kanahashi, Pu, Takenobu (bib6) 2020; 10
Peng, Jeffrey Snyder (bib19) 2019; 366
Yilbas, Ali (bib36) 2015; 100
Liu (10.1016/j.xcrp.2022.100780_bib13) 2021; 2
Yilbas (10.1016/j.xcrp.2022.100780_bib36) 2015; 100
Kim (10.1016/j.xcrp.2022.100780_bib29) 2018; 3
Wiese (10.1016/j.xcrp.2022.100780_bib43) 1960; 15
Peng (10.1016/j.xcrp.2022.100780_bib19) 2019; 366
He (10.1016/j.xcrp.2022.100780_bib23) 2018; 3
Liu (10.1016/j.xcrp.2022.100780_bib45) 2013; 1
Kim (10.1016/j.xcrp.2022.100780_bib14) 2014; 23
Nan (10.1016/j.xcrp.2022.100780_bib18) 2018; 4
Kim (10.1016/j.xcrp.2022.100780_bib40) 2018; 214
Dun (10.1016/j.xcrp.2022.100780_bib5) 2017; 29
Kim (10.1016/j.xcrp.2022.100780_bib15) 2018; 3
Zhu (10.1016/j.xcrp.2022.100780_bib32) 2020; 13
Zhu (10.1016/j.xcrp.2022.100780_bib41) 2021; 11
Wang (10.1016/j.xcrp.2022.100780_bib10) 2018; 11
Baranowski (10.1016/j.xcrp.2022.100780_bib39) 2013; 113
Wang (10.1016/j.xcrp.2022.100780_bib16) 2018; 215
Kishore (10.1016/j.xcrp.2022.100780_bib31) 2019; 10
Du (10.1016/j.xcrp.2022.100780_bib1) 2018; 12
Allison (10.1016/j.xcrp.2022.100780_bib17) 2019; 4
Hodes (10.1016/j.xcrp.2022.100780_bib24) 2010; 33
Leonov (10.1016/j.xcrp.2022.100780_bib20) 2009; 38
Li (10.1016/j.xcrp.2022.100780_bib44) 2017; 119
Wang (10.1016/j.xcrp.2022.100780_bib2) 2019; 31
Kim (10.1016/j.xcrp.2022.100780_bib12) 2014; 7
Kanahashi (10.1016/j.xcrp.2022.100780_bib6) 2020; 10
Yu (10.1016/j.xcrp.2022.100780_bib7) 2012; 5
Chen (10.1016/j.xcrp.2022.100780_bib8) 2015; 8
Dongxu (10.1016/j.xcrp.2022.100780_bib26) 2019; 195
Fateh (10.1016/j.xcrp.2022.100780_bib25) 2014; 129
Wan (10.1016/j.xcrp.2022.100780_bib4) 2016; 30
Zhang (10.1016/j.xcrp.2022.100780_bib33) 2017; 10
Shi (10.1016/j.xcrp.2022.100780_bib37) 2015; 97
Fabián-Mijangos (10.1016/j.xcrp.2022.100780_bib38) 2017; 148
Wan (10.1016/j.xcrp.2022.100780_bib3) 2015; 14
Min (10.1016/j.xcrp.2022.100780_bib28) 1992; 38
Oki (10.1016/j.xcrp.2022.100780_bib34) 2017; 46
Kroon (10.1016/j.xcrp.2022.100780_bib9) 2016; 45
Yamashita (10.1016/j.xcrp.2022.100780_bib22) 2011; 88
Suarez (10.1016/j.xcrp.2022.100780_bib30) 2016; 9
Hong (10.1016/j.xcrp.2022.100780_bib11) 2019; 5
Ju (10.1016/j.xcrp.2022.100780_bib21) 2000; 88
Ali (10.1016/j.xcrp.2022.100780_bib35) 2014; 78
Francombe (10.1016/j.xcrp.2022.100780_bib42) 1958; 9
Huang (10.1016/j.xcrp.2022.100780_bib27) 2013; 59
References_xml – volume: 33
  start-page: 307
  year: 2010
  end-page: 318
  ident: bib24
  article-title: Optimal pellet geometries for thermoelectric power generation
  publication-title: IEEE Trans. Components Packag. Technol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib31
  article-title: Ultra-high performance wearable thermoelectric coolers with less materials
  publication-title: Nat. Commun.
– volume: 23
  start-page: 105002
  year: 2014
  ident: bib14
  article-title: Wearable thermoelectric generator for harvesting human body heat energy
  publication-title: Smart Mater. Struct.
– volume: 97
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib37
  article-title: Nominal power density analysis of thermoelectric pins with non-constant cross sections
  publication-title: Energy Convers. Manag.
– volume: 38
  start-page: 1491
  year: 2009
  end-page: 1498
  ident: bib20
  article-title: Wearable thermoelectric generators for body-powered devices
  publication-title: J. Electron. Mater.
– volume: 88
  start-page: 3022
  year: 2011
  end-page: 3029
  ident: bib22
  article-title: Effect of interface layer on the cooling performance of a single thermoelement
  publication-title: Appl. Energy
– volume: 214
  start-page: 131
  year: 2018
  end-page: 138
  ident: bib40
  article-title: Structural design of a flexible thermoelectric power generator for wearable applications
  publication-title: Appl. Energy
– volume: 5
  start-page: 9481
  year: 2012
  end-page: 9486
  ident: bib7
  article-title: Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 689
  year: 2013
  end-page: 697
  ident: bib27
  article-title: Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method
  publication-title: Energy
– volume: 14
  start-page: 622
  year: 2015
  end-page: 627
  ident: bib3
  article-title: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS
  publication-title: Nat. Mater.
– volume: 195
  start-page: 236
  year: 2019
  end-page: 243
  ident: bib26
  article-title: Geometry optimization of thermoelectric modules: simulation and experimental study
  publication-title: Energy Convers. Manag.
– volume: 129
  start-page: 373
  year: 2014
  end-page: 383
  ident: bib25
  article-title: High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space
  publication-title: Appl. Energy
– volume: 9
  start-page: 415
  year: 1958
  end-page: 417
  ident: bib42
  article-title: Structure-cell data and expansion coefficients of bismuth telluride
  publication-title: Br. J. Appl. Phys.
– volume: 5
  start-page: eaaw0536
  year: 2019
  ident: bib11
  article-title: Wearable thermoelectrics for personalized thermoregulation
  publication-title: Sci. Adv.
– volume: 113
  start-page: 204904
  year: 2013
  ident: bib39
  article-title: Effective thermal conductivity in thermoelectric materials
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 1307
  year: 2018
  end-page: 1317
  ident: bib10
  article-title: Solution-printable fullerene/TiS
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 366
  year: 2018
  end-page: 388
  ident: bib1
  article-title: Flexible thermoelectric materials and devices
  publication-title: Appl. Mater. Today
– volume: 366
  start-page: 690
  year: 2019
  end-page: 691
  ident: bib19
  article-title: A figure of merit for flexibility
  publication-title: Science.
– volume: 13
  start-page: 3514
  year: 2020
  end-page: 3526
  ident: bib32
  article-title: System efficiency and power: the bridge between the device and system of a thermoelectric power generator
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1700256
  year: 2018
  ident: bib23
  article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization
  publication-title: Adv. Mater. Technol.
– volume: 30
  start-page: 840
  year: 2016
  end-page: 845
  ident: bib4
  article-title: Flexible thermoelectric foil for wearable energy harvesting
  publication-title: Nano Energy
– volume: 9
  start-page: 2099
  year: 2016
  end-page: 2113
  ident: bib30
  article-title: Designing thermoelectric generators for self-powered wearable electronics
  publication-title: Energy Environ. Sci.
– volume: 215
  start-page: 690
  year: 2018
  end-page: 698
  ident: bib16
  article-title: Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer
  publication-title: Appl. Energy
– volume: 45
  start-page: 6147
  year: 2016
  end-page: 6164
  ident: bib9
  article-title: Thermoelectric plastics: from design to synthesis, processing and structure-property relationships
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 1807916
  year: 2019
  ident: bib2
  article-title: Flexible thermoelectric materials and generators: challenges and innovations
  publication-title: Adv. Mater.
– volume: 10
  start-page: 956
  year: 2017
  end-page: 963
  ident: bib33
  article-title: Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 501
  year: 2018
  end-page: 507
  ident: bib15
  article-title: Self-powered wearable electrocardiography using a wearable thermoelectric power generator
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 100412
  year: 2021
  ident: bib13
  article-title: A wearable real-time power supply with a Mg
  publication-title: Cell Rep. Phys. Sci.
– volume: 3
  start-page: 301
  year: 2018
  end-page: 309
  ident: bib29
  article-title: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi
  publication-title: Nat. Energy
– volume: 100
  start-page: 138
  year: 2015
  end-page: 146
  ident: bib36
  article-title: Thermoelectric generator performance analysis: influence of pin tapering on the first and second law efficiencies
  publication-title: Energy Convers. Manag.
– volume: 10
  start-page: 1902842
  year: 2020
  ident: bib6
  article-title: 2D materials for large-area flexible thermoelectric devices
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 401
  year: 2015
  end-page: 422
  ident: bib8
  article-title: Solution processed organic thermoelectrics: towards flexible thermoelectric modules
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 2691
  year: 2017
  end-page: 2696
  ident: bib34
  article-title: Performance simulation of a flat-plate thermoelectric module consisting of square truncated pyramid elements
  publication-title: J. Electron. Mater.
– volume: 38
  start-page: 253
  year: 1992
  end-page: 259
  ident: bib28
  article-title: Optimisation of thermoelectric module geometry for “waste heat” electric power generation
  publication-title: J. Power Sourc.
– volume: 4
  start-page: 1800615
  year: 2019
  ident: bib17
  article-title: A wearable all-fabric thermoelectric generator
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 2100920
  year: 2021
  ident: bib41
  article-title: Recyclable, healable, and stretchable high-power thermoelectric generator
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 13093
  year: 2013
  end-page: 13100
  ident: bib45
  article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: eaau5849
  year: 2018
  ident: bib18
  article-title: Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices
  publication-title: Sci. Adv.
– volume: 15
  start-page: 13
  year: 1960
  end-page: 16
  ident: bib43
  article-title: Lattice constants of Bi
  publication-title: J. Phys. Chem. Sol.
– volume: 88
  start-page: 4135
  year: 2000
  end-page: 4139
  ident: bib21
  article-title: Study of interface effects in thermoelectric microrefrigerators
  publication-title: J. Appl. Phys.
– volume: 119
  start-page: 085501
  year: 2017
  ident: bib44
  article-title: Superstrengthening Bi
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 1700070
  year: 2017
  ident: bib5
  article-title: 2D chalcogenide nanoplate Assemblies for thermoelectric applications
  publication-title: Adv. Mater.
– volume: 78
  start-page: 634
  year: 2014
  end-page: 640
  ident: bib35
  article-title: Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins
  publication-title: Energy Convers. Manag.
– volume: 7
  start-page: 1959
  year: 2014
  end-page: 1965
  ident: bib12
  article-title: A wearable thermoelectric generator fabricated on a glass fabric
  publication-title: Energy Environ. Sci.
– volume: 148
  start-page: 1372
  year: 2017
  end-page: 1381
  ident: bib38
  article-title: Enhanced performance thermoelectric module having asymmetrical legs
  publication-title: Energy Convers. Manag.
– volume: 38
  start-page: 1491
  year: 2009
  ident: 10.1016/j.xcrp.2022.100780_bib20
  article-title: Wearable thermoelectric generators for body-powered devices
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-008-0638-6
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib31
  article-title: Ultra-high performance wearable thermoelectric coolers with less materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09707-8
– volume: 13
  start-page: 3514
  year: 2020
  ident: 10.1016/j.xcrp.2022.100780_bib32
  article-title: System efficiency and power: the bridge between the device and system of a thermoelectric power generator
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01640C
– volume: 14
  start-page: 622
  year: 2015
  ident: 10.1016/j.xcrp.2022.100780_bib3
  article-title: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4251
– volume: 29
  start-page: 1700070
  year: 2017
  ident: 10.1016/j.xcrp.2022.100780_bib5
  article-title: 2D chalcogenide nanoplate Assemblies for thermoelectric applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700070
– volume: 9
  start-page: 2099
  year: 2016
  ident: 10.1016/j.xcrp.2022.100780_bib30
  article-title: Designing thermoelectric generators for self-powered wearable electronics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00456C
– volume: 195
  start-page: 236
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib26
  article-title: Geometry optimization of thermoelectric modules: simulation and experimental study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.05.003
– volume: 30
  start-page: 840
  year: 2016
  ident: 10.1016/j.xcrp.2022.100780_bib4
  article-title: Flexible thermoelectric foil for wearable energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.011
– volume: 88
  start-page: 3022
  year: 2011
  ident: 10.1016/j.xcrp.2022.100780_bib22
  article-title: Effect of interface layer on the cooling performance of a single thermoelement
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.03.017
– volume: 3
  start-page: 301
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib29
  article-title: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0071-2
– volume: 97
  start-page: 1
  year: 2015
  ident: 10.1016/j.xcrp.2022.100780_bib37
  article-title: Nominal power density analysis of thermoelectric pins with non-constant cross sections
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.046
– volume: 8
  start-page: 401
  year: 2015
  ident: 10.1016/j.xcrp.2022.100780_bib8
  article-title: Solution processed organic thermoelectrics: towards flexible thermoelectric modules
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03297G
– volume: 15
  start-page: 13
  year: 1960
  ident: 10.1016/j.xcrp.2022.100780_bib43
  article-title: Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys
  publication-title: J. Phys. Chem. Sol.
  doi: 10.1016/0022-3697(60)90094-9
– volume: 33
  start-page: 307
  year: 2010
  ident: 10.1016/j.xcrp.2022.100780_bib24
  article-title: Optimal pellet geometries for thermoelectric power generation
  publication-title: IEEE Trans. Components Packag. Technol.
  doi: 10.1109/TCAPT.2009.2039934
– volume: 100
  start-page: 138
  year: 2015
  ident: 10.1016/j.xcrp.2022.100780_bib36
  article-title: Thermoelectric generator performance analysis: influence of pin tapering on the first and second law efficiencies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.05.005
– volume: 78
  start-page: 634
  year: 2014
  ident: 10.1016/j.xcrp.2022.100780_bib35
  article-title: Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.029
– volume: 31
  start-page: 1807916
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib2
  article-title: Flexible thermoelectric materials and generators: challenges and innovations
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807916
– volume: 1
  start-page: 13093
  year: 2013
  ident: 10.1016/j.xcrp.2022.100780_bib45
  article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13456c
– volume: 9
  start-page: 415
  year: 1958
  ident: 10.1016/j.xcrp.2022.100780_bib42
  article-title: Structure-cell data and expansion coefficients of bismuth telluride
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/9/10/307
– volume: 119
  start-page: 085501
  year: 2017
  ident: 10.1016/j.xcrp.2022.100780_bib44
  article-title: Superstrengthening Bi2Te3 through nanotwinning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.085501
– volume: 3
  start-page: 1700256
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib23
  article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700256
– volume: 148
  start-page: 1372
  year: 2017
  ident: 10.1016/j.xcrp.2022.100780_bib38
  article-title: Enhanced performance thermoelectric module having asymmetrical legs
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.06.087
– volume: 45
  start-page: 6147
  year: 2016
  ident: 10.1016/j.xcrp.2022.100780_bib9
  article-title: Thermoelectric plastics: from design to synthesis, processing and structure-property relationships
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00149A
– volume: 129
  start-page: 373
  year: 2014
  ident: 10.1016/j.xcrp.2022.100780_bib25
  article-title: High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.088
– volume: 59
  start-page: 689
  year: 2013
  ident: 10.1016/j.xcrp.2022.100780_bib27
  article-title: Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.069
– volume: 38
  start-page: 253
  year: 1992
  ident: 10.1016/j.xcrp.2022.100780_bib28
  article-title: Optimisation of thermoelectric module geometry for “waste heat” electric power generation
  publication-title: J. Power Sourc.
  doi: 10.1016/0378-7753(92)80114-Q
– volume: 12
  start-page: 366
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib1
  article-title: Flexible thermoelectric materials and devices
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.07.004
– volume: 46
  start-page: 2691
  year: 2017
  ident: 10.1016/j.xcrp.2022.100780_bib34
  article-title: Performance simulation of a flat-plate thermoelectric module consisting of square truncated pyramid elements
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-4905-7
– volume: 113
  start-page: 204904
  year: 2013
  ident: 10.1016/j.xcrp.2022.100780_bib39
  article-title: Effective thermal conductivity in thermoelectric materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4807314
– volume: 11
  start-page: 2100920
  year: 2021
  ident: 10.1016/j.xcrp.2022.100780_bib41
  article-title: Recyclable, healable, and stretchable high-power thermoelectric generator
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100920
– volume: 3
  start-page: 501
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib15
  article-title: Self-powered wearable electrocardiography using a wearable thermoelectric power generator
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01237
– volume: 4
  start-page: 1800615
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib17
  article-title: A wearable all-fabric thermoelectric generator
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800615
– volume: 2
  start-page: 100412
  year: 2021
  ident: 10.1016/j.xcrp.2022.100780_bib13
  article-title: A wearable real-time power supply with a Mg3Bi2-based thermoelectric module
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100412
– volume: 11
  start-page: 1307
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib10
  article-title: Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03617E
– volume: 5
  start-page: 9481
  year: 2012
  ident: 10.1016/j.xcrp.2022.100780_bib7
  article-title: Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22838f
– volume: 215
  start-page: 690
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib16
  article-title: Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.062
– volume: 214
  start-page: 131
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib40
  article-title: Structural design of a flexible thermoelectric power generator for wearable applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.074
– volume: 7
  start-page: 1959
  year: 2014
  ident: 10.1016/j.xcrp.2022.100780_bib12
  article-title: A wearable thermoelectric generator fabricated on a glass fabric
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00242c
– volume: 23
  start-page: 105002
  year: 2014
  ident: 10.1016/j.xcrp.2022.100780_bib14
  article-title: Wearable thermoelectric generator for harvesting human body heat energy
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/10/105002
– volume: 366
  start-page: 690
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib19
  article-title: A figure of merit for flexibility
  publication-title: Science.
  doi: 10.1126/science.aaz5704
– volume: 10
  start-page: 1902842
  year: 2020
  ident: 10.1016/j.xcrp.2022.100780_bib6
  article-title: 2D materials for large-area flexible thermoelectric devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902842
– volume: 5
  start-page: eaaw0536
  year: 2019
  ident: 10.1016/j.xcrp.2022.100780_bib11
  article-title: Wearable thermoelectrics for personalized thermoregulation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0536
– volume: 88
  start-page: 4135
  year: 2000
  ident: 10.1016/j.xcrp.2022.100780_bib21
  article-title: Study of interface effects in thermoelectric microrefrigerators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1289776
– volume: 4
  start-page: eaau5849
  year: 2018
  ident: 10.1016/j.xcrp.2022.100780_bib18
  article-title: Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau5849
– volume: 10
  start-page: 956
  year: 2017
  ident: 10.1016/j.xcrp.2022.100780_bib33
  article-title: Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00447H
SSID ssj0002511780
Score 2.385915
Snippet Flexible thermoelectric generators (f-TEGs) are promising solutions to power supply for wearable devices. However, the high fabrication costs and low output...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100780
SubjectTerms flexible thermoelectric generator
power generation
thermal design
wearable device
Title High-performance, flexible thermoelectric generator based on bulk materials
URI https://dx.doi.org/10.1016/j.xcrp.2022.100780
https://doaj.org/article/2d76fef2bbb44b7f8b4105256fa62f88
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxZEeYjykgcGEETk4TjOCIiqApWJSt2i2PGhQmkraCUmfjt3dloylYUlQ-RH9Pmc77N0_o6xsxQSUSHtBibMbCBARLjnhA7CWKdWAmpiZ6XUf5K9gXgYpsNGqS_KCfP2wB6467jKJFiItdZC6AyUpsREJGooZQzKXfNFzmscpugfTMI5c2XTkIBkkCgp6hszPrnryzizyjh2WQLkCdlgJWfe3yCnBuF0t9lWrRT5jf_CNtuwkx3WrvfiJz-vDaMvdtkjJWsEs98rAFccyOdSjy0nffc-9cVuRoa_uE54zuZEXxWfTrhejN846lYfints0L1_vusFdZGEwCAQ88DYyAoFJcgkzMs8ykGRrVcpSwW5TbVUiS5RVgEIm6FcicIKjNI2KsnIHsl-n7Um04k9YByMJcKP4lCQbaDVJsG-AlQlSJmoDouWIBWmdhCnQhbjYpkq9loQsAUBW3hgO-xy1Wfm_TPWtr4l7FctyfvavcCIKOqIKP6KiA5LlytX1DLCywMcarRm8sP_mPyIbdKQlKUWyWPWmn8s7AnKlrk-dRGKz_73_Q96--jt
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance%2C+flexible+thermoelectric+generator+based+on+bulk+materials&rft.jtitle=Cell+reports+physical+science&rft.au=Xu%2C+Qian&rft.au=Deng%2C+Biao&rft.au=Zhang%2C+Lenan&rft.au=Lin%2C+Shaoting&rft.date=2022-03-16&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=3&rft.issue=3&rft.spage=100780&rft_id=info:doi/10.1016%2Fj.xcrp.2022.100780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xcrp_2022_100780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon