A model study on the influence of overshooting convection on TTL water vapour

Overshooting deep convection that penetrates into the Tropical Tropopause Layer (TTL) is thought to have an important role in regulating the water vapour content of this region. Yet, the net effect of such convection and the dominant mechanisms remain unclear. This study uses two idealised three-dim...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 10; no. 20; pp. 9833 - 9849
Main Authors Hassim, M. E. E., Lane, T. P.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 19.10.2010
Copernicus Publications
Online AccessGet full text

Cover

Loading…
More Information
Summary:Overshooting deep convection that penetrates into the Tropical Tropopause Layer (TTL) is thought to have an important role in regulating the water vapour content of this region. Yet, the net effect of such convection and the dominant mechanisms remain unclear. This study uses two idealised three-dimensional cloud-resolving model simulations to examine the influence of overshooting convection on water vapour when it penetrates into two different TTL environments, one supersaturated and the other subsaturated with respect to ice. These simulations show that the overshooting convection plays a direct role in driving the ambient environment towards ice saturation through either net moistening (subsaturated TTL) or net dehydration (supersaturated TTL). Moreover, in these cases the extent of dehydration in supersaturated conditions is greater than the moistening in subsaturated conditions. With the aid of modelled passive tracers, the relative roles of transport, mixing and ice microphysics are assessed; ultimately, ice sublimation and scavenging processes play the most important role in defining the different TTL relative humidity tendencies. In addition, significant moistening in both cases is modelled well into the subsaturated tropical lower stratosphere (up to 450 K), even though the overshooting turrets only reach approximately 420 K. It is shown that this moistening is the result of jumping cirrus, which is induced by the localised upward transport and mixing of TTL air following the collapse of the overshooting turret.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-10-9833-2010