Improvement of the alkali stability of Penicillium cyclopium lipase by error-prone PCR

Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperat...

Full description

Saved in:
Bibliographic Details
Published inElectronic Journal of Biotechnology Vol. 39; pp. 91 - 97
Main Authors Huang, Lin, Zheng, Dong, Zhao, Yatong, Ma, Jieying, Li, Yanzhen, Xu, Zehua, Shan, Mengying, Shao, Shulin, Guo, Qingwen, Zhang, Jie, Lu, Fuping, Liu, Yihan
Format Journal Article
LanguageEnglish
Published Elsevier España, S.L.U 01.05.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and β-strand propensity. This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification. How to cite: Huang L, Zheng D, Zhao Y, et al. Improvement of the alkali stability of Penicillium cyclopium lipase by error-prone PCR. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.04.002
ISSN:0717-3458
0717-3458
DOI:10.1016/j.ejbt.2019.04.002