A second glutamine synthetase gene with expression in the gills of the gulf toadfish (Opsanus beta)

We characterized the expression of the nitrogen metabolism enzyme glutamine synthetase [GSase; L-glutamate: ammonia ligase (ADP-forming), E.C. 6.3.1.2] in tissues of the gulf toadfish Opsanus beta subjected to unconfined (ammonotelic) and confined (ureotelic) conditions. Enzymological results demons...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 206; no. Pt 9; pp. 1523 - 1533
Main Authors Walsh, Patrick J, Mayer, Gregory D, Medina, Mónica, Bernstein, Matthew L, Barimo, John F, Mommsen, Thomas P
Format Journal Article
LanguageEnglish
Published England 01.05.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We characterized the expression of the nitrogen metabolism enzyme glutamine synthetase [GSase; L-glutamate: ammonia ligase (ADP-forming), E.C. 6.3.1.2] in tissues of the gulf toadfish Opsanus beta subjected to unconfined (ammonotelic) and confined (ureotelic) conditions. Enzymological results demonstrate that mass-specific GSase activities rank in the order of brain > liver > stomach approximately kidney > intestine > gill > heart/spleen > muscle. When tissue mass is used to calculate a glutamine synthetic potential, the liver has the greatest, followed by muscle > stomach and intestine, with minor contributions from the remaining tissues. Additionally, during confinement stress, GSase activity increases significantly only in liver (fivefold) and muscle (twofold), tissues that previously showed significant expression of the other enzymes of urea synthesis. Western analyses of samples on SDS gels demonstrated that GSase-specific protein content reflected enzyme activity, and all tissues except muscle had a single, similarly sized GSase subunit of 49.4 kDa; muscle showed staining of two bands of 36.8 and 98.9 kDa, which may possibly result from another gene product or post-translational modification. RT-PCR and RACE-PCR revealed the presence of a second GSase cDNA from gill tissue that shares only 73% nucleotide and amino acid sequence similarity with the GSase cDNA previously cloned from liver, and that lacks a mitochondrial leader-targeting sequence. RT-PCR and restriction digestion experiments demonstrated that mRNA from the original 'liver' GSase is expressed in all tissues examined (liver, gill, stomach, intestine, kidney, brain and muscle), whereas the new 'gill' form shows expression primarily in the gill. Gill GSase activity shows apparently exclusive expression in the soluble compartment, while other tissues expressing the 'liver' form show both cytoplasmic and mitochondrial activities. Phylogenetic analysis of a number of GSases demonstrates that the toadfish gill GSase has a greater affinity for a clade that includes the Xenopus GSase genes and one of two Fugu GSase genes, than it has for a clade containing the toadfish liver GSase and other described teleost GSase genes. The results are discussed in the context of a prior hypothesis on an ammonia-trapping mechanism in the gill of the toadfish.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
AC03-76SF00098
LBNL-52632
U.S. DOE. Office of Science. Biological and Environmental Research (US)
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.00251