Selectively doped heterostructure frequency dividers
The operation of high-speed divide-by-two circuit (binary counter) composed of selectively doped heterostructure logic gates is reported for the first time. These field-effect transistor circuits utilize the enhanced transport properties of high-mobility electrons confined near a heterojunction inte...
Saved in:
Published in | IEEE electron device letters Vol. 4; no. 10; pp. 377 - 379 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.1983
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The operation of high-speed divide-by-two circuit (binary counter) composed of selectively doped heterostructure logic gates is reported for the first time. These field-effect transistor circuits utilize the enhanced transport properties of high-mobility electrons confined near a heterojunction interface in a selectively doped AlGaAs/GaAs structure. The dividers are based on a Type-D flip-flop composed of six direct-coupled NOR-gates having 1-µm gate lengths and 4-µm source-drain spacings. They are fabricated by conventional optical contact lithography on a four-layer Al .3 Ga .7 As/GaAs structure grown by molecular-beam epitaxy. Successful operation is demonstrated at 5.9 GHz at 77 K for 1.3-V bias and 30-mW total power dissipation (including output buffers) and 3.7 GHz at 300 K for 1.4-V bias and 19-mW total power dissipation. Total power dissipation values as low as 3.9 mW at 0.65-V bias were also obtained for 2.85-GHz operation at 300 K. These preliminary results illustrate the promise of SDHT logic for ultrahigh-speed low-power applications. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/EDL.1983.25770 |