Bandpass filters for 8 GHz using solidly mounted bulk acoustic wave resonators

Frequency shift, design, and fabrication issues have been investigated for the realization of 8 GHz bandpass filters based on AlN thin film bulk acoustic wave resonators. Fabrication includes well-textured AlN thin films on Pt (111) electrodes and SiO/sub 2//AlN Bragg gratings for the solidly mounte...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 52; no. 6; pp. 936 - 946
Main Authors Lanz, R., Muralt, P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
DOI10.1109/TUFFC.2005.1504014

Cover

Loading…
More Information
Summary:Frequency shift, design, and fabrication issues have been investigated for the realization of 8 GHz bandpass filters based on AlN thin film bulk acoustic wave resonators. Fabrication includes well-textured AlN thin films on Pt (111) electrodes and SiO/sub 2//AlN Bragg gratings for the solidly mounted resonators. The chosen ladder filter design requires the tuning of the shunt resonators with respect to the series one. For this purpose, mass loading of the shunt resonators with aluminum (Al) and SiO/sub 2/ were studied. Design simulations showed that the channel bandwidth can be doubled by shifting more than the difference of resonance and antiresonance frequency. Bandpass filters at 8 GHz were successfully fabricated with -5.5 dB insertion loss, -26 dB out-of-band rejection, 99 MHz (1.2%) /spl plusmn/0.2 dB channel bandwidth, and 224 MHz (2.8%) 3 dB bandwidth. The group delay variations within any 30 MHz channel inside the channel bandwidth amounts to <0.2 ns. Comparisons with simulation calculations and single resonator characteristics show that each /spl pi/-section includes a parasitic series resistance and inductance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2005.1504014