The reachable 3-D workspace volume is a measure of payload and body-mass-index: A quasi-static kinetic assessment
An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its...
Saved in:
Published in | Applied ergonomics Vol. 75; pp. 108 - 119 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = −0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.
[Display omitted]
•A new experimental protocol is proposed for assessing the reachable 3-D workspace.•Alpha-shapes enable retrieval of the non-convex shape of all reachable envelopes.•The reachable 3-D workspace volume inversely correlates to payload.•Payload and body-mass-index predicted 73% of the variation in the RWS volume. |
---|---|
AbstractList | An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index. An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = −0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index. [Display omitted] •A new experimental protocol is proposed for assessing the reachable 3-D workspace.•Alpha-shapes enable retrieval of the non-convex shape of all reachable envelopes.•The reachable 3-D workspace volume inversely correlates to payload.•Payload and body-mass-index predicted 73% of the variation in the RWS volume. An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, R = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index. |
Author | Bai, Shaoping Andersen, Michael Skipper Rasmussen, John Castro, Miguel Nobre |
Author_xml | – sequence: 1 givenname: Miguel Nobre orcidid: 0000-0001-5137-0368 surname: Castro fullname: Castro, Miguel Nobre email: mnc@mp.aau.dk – sequence: 2 givenname: John orcidid: 0000-0003-3257-5653 surname: Rasmussen fullname: Rasmussen, John email: jr@mp.aau.dk – sequence: 3 givenname: Shaoping surname: Bai fullname: Bai, Shaoping email: shb@mp.aau.dk – sequence: 4 givenname: Michael Skipper surname: Andersen fullname: Andersen, Michael Skipper email: msa@mp.aau.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30509515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFP3DAQha0KVBbaf1BVPvaS1I6dxOFQCdFCkZC4wNma2LPFS2Jn7QS6_75eLVx6aOcyGul7TzPzTsmRDx4J-cRZyRlvvm5KmDD-CmXFuCpZVzLO3pEVV21VdLxqjsiKMSaKRrXshJymtMmjkrx-T04Eq1lX83pFtvePSCOCeYR-QCqK7_QlxKc0gUH6HIZlROoSBToipCUiDWs6wW4IYCl4S_tgd8UIKRXOW_x9Ti_odoHkijTD7Ax9ch73PROY0oh-_kCO1zAk_Pjaz8jD1Y_7y5_F7d31zeXFbWEkZ3NRc8EqNGbdtsaKvG3fWzCNhU5y2zSNFAhKdqLqwXCUUrQItVKtxFxCGHFGvhx8pxi2C6ZZjy4ZHAbwGJakKy47VStRdxn9_Iou_YhWT9GNEHf67U0ZOD8AJoaUIq61cfv7gp8juEFzpveZ6I0-ZKL3mWjW6ZxJFsu_xG_-_5F9O8gwP-nZYdTJOPQGrYtoZm2D-7fBH147qHE |
CitedBy_id | crossref_primary_10_1177_09544062241295631 crossref_primary_10_1016_j_mechmachtheory_2018_11_007 crossref_primary_10_1115_1_4047462 crossref_primary_10_1007_s12008_021_00779_9 crossref_primary_10_1016_j_jbiomech_2021_110939 crossref_primary_10_1016_j_jbiomech_2019_04_037 crossref_primary_10_1109_TNSRE_2020_3010625 |
Cites_doi | 10.1145/174462.156635 10.1016/0021-9290(91)90294-W 10.1016/0021-9290(92)90270-B 10.1504/IJHFMS.2012.050071 10.1080/0014013032000157850 10.1080/10255840903067080 10.1016/j.jbiomech.2005.11.010 10.1109/21.299704 10.1016/S0021-9290(97)00011-0 10.3233/THC-130764 10.1080/10255840802459412 10.1109/TNSRE.2006.881565 10.3233/OER-160234 10.1371/journal.pone.0045341 10.1007/s11012-005-3067-0 10.1016/j.jbiomech.2006.05.030 10.1080/001401300421824 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.apergo.2018.09.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Psychology |
EISSN | 1872-9126 |
EndPage | 119 |
ExternalDocumentID | 30509515 10_1016_j_apergo_2018_09_010 S0003687018304071 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 3EH 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACIWK ACKIV ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SES SET SEW SPC SPCBC SSB SSO SST SSV SSZ T5K TAE TN5 UAP UHS UPT VH1 WH7 WUQ X6Y XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS |
ID | FETCH-LOGICAL-c410t-51302eccf77cd3095bbdac6da941d66643ea84932bac1e4437ea58874eeee33c3 |
IEDL.DBID | .~1 |
ISSN | 0003-6870 1872-9126 |
IngestDate | Mon Jul 21 09:43:15 EDT 2025 Wed Feb 19 02:35:00 EST 2025 Tue Jul 01 03:09:26 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Fri Feb 23 02:27:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Strength measurements Reachable workspace Upper extremity kinematics Statistical modelling |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-51302eccf77cd3095bbdac6da941d66643ea84932bac1e4437ea58874eeee33c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3257-5653 0000-0001-5137-0368 |
PMID | 30509515 |
PQID | 2149858359 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2149858359 pubmed_primary_30509515 crossref_citationtrail_10_1016_j_apergo_2018_09_010 crossref_primary_10_1016_j_apergo_2018_09_010 elsevier_sciencedirect_doi_10_1016_j_apergo_2018_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Applied ergonomics |
PublicationTitleAlternate | Appl Ergon |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Klopčar, Tomšič, Lenarčič (bib11) 2007; 40 Han, Kurillo, Abresch, Nicorici, Bajcsy (bib8) 2013 Sengupta, Das, AK, Das (bib21) 2000; 43 Matthew, Kurillo, Han, Bajcsy (bib16) 2015 Montgomery, Runger (bib17) 2003 Siciliano, Sciavicco, Villani, Oriolo (bib24) 2009 Kurillo, Han, Obdržálek, Yan, Abresch, Nicorici, Bajcsy (bib14) 2013 Andersen, Damsgaard, Rasmussen (bib2) 2009; 12 de Zee, Hansen, Wong, Rasmussen, Simonsen (bib5) 2007; 40 Sengupta, Das (bib23) 2004; 47 Kurillo, Chen, Bajcsy, Han (bib12) 2013; 21 Veeger, Yu, An, Rozendal (bib27) 1997; 30 Yang, Abdel-Malek, Nebel (bib28) 2005; 20 Rosen, Perry, Manning, Burns, Hannaford (bib19) 2005 D'Souza, Rasmussen, Schwirtz (bib4) 2012; 3 Han, de Bie, Nicorici, Abresch, Bajcsy, Kurillo (bib7) 2015; 2 Van der Helm, Veeger, Pronk, Van der Woude, Rozendal (bib25) 1992; 25 Johnston, Dewis, Kozey (bib9) 2015; 12 Schiele, van der Helm (bib20) 2006; 14 Park (bib18) 2007 Sengupta, Das (bib22) 1998 Veeger, Van Der Helm, Van Der Woude, Pronk, Rozendal (bib26) 1991; 24 Kurillo, Han, Abresch, Nicorici, Yan, Bajcsy (bib13) 2012; 7 Lenarcic, Umek (bib15) 1994; 24 Chaffin, Andersson, Martin (bib3) 2006 Edelsbrunner, Mücke (bib6) 1994; 13 Andersen, Damsgaard, MacWilliams, Rasmussen (bib1) 2010; 13 Klopčar, Lenarčič (bib10) 2005; 40 Edelsbrunner (10.1016/j.apergo.2018.09.010_bib6) 1994; 13 de Zee (10.1016/j.apergo.2018.09.010_bib5) 2007; 40 Yang (10.1016/j.apergo.2018.09.010_bib28) 2005; 20 Kurillo (10.1016/j.apergo.2018.09.010_bib14) 2013 Veeger (10.1016/j.apergo.2018.09.010_bib26) 1991; 24 Han (10.1016/j.apergo.2018.09.010_bib7) 2015; 2 Sengupta (10.1016/j.apergo.2018.09.010_bib23) 2004; 47 Siciliano (10.1016/j.apergo.2018.09.010_bib24) 2009 Andersen (10.1016/j.apergo.2018.09.010_bib1) 2010; 13 Schiele (10.1016/j.apergo.2018.09.010_bib20) 2006; 14 Johnston (10.1016/j.apergo.2018.09.010_bib9) 2015; 12 Van der Helm (10.1016/j.apergo.2018.09.010_bib25) 1992; 25 Klopčar (10.1016/j.apergo.2018.09.010_bib11) 2007; 40 Park (10.1016/j.apergo.2018.09.010_bib18) 2007 Rosen (10.1016/j.apergo.2018.09.010_bib19) 2005 Klopčar (10.1016/j.apergo.2018.09.010_bib10) 2005; 40 Andersen (10.1016/j.apergo.2018.09.010_bib2) 2009; 12 Kurillo (10.1016/j.apergo.2018.09.010_bib12) 2013; 21 Lenarcic (10.1016/j.apergo.2018.09.010_bib15) 1994; 24 Chaffin (10.1016/j.apergo.2018.09.010_bib3) 2006 Sengupta (10.1016/j.apergo.2018.09.010_bib22) 1998 Kurillo (10.1016/j.apergo.2018.09.010_bib13) 2012; 7 Sengupta (10.1016/j.apergo.2018.09.010_bib21) 2000; 43 Montgomery (10.1016/j.apergo.2018.09.010_bib17) 2003 Veeger (10.1016/j.apergo.2018.09.010_bib27) 1997; 30 Matthew (10.1016/j.apergo.2018.09.010_bib16) 2015 D'Souza (10.1016/j.apergo.2018.09.010_bib4) 2012; 3 Han (10.1016/j.apergo.2018.09.010_bib8) 2013 |
References_xml | – volume: 13 start-page: 43 year: 1994 end-page: 72 ident: bib6 article-title: Three-dimensional alpha shapes publication-title: ACM Trans. Graph. – volume: 24 start-page: 615 year: 1991 end-page: 629 ident: bib26 article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomech. – volume: 3 start-page: 32 year: 2012 end-page: 47 ident: bib4 article-title: Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass publication-title: Int. J. Hum. Factors Model Simulat. – volume: 25 start-page: 129 year: 1992 end-page: 144 ident: bib25 article-title: Geometry parameters for musculoskeletal modelling of the shoulder system publication-title: J. Biomech. – volume: 14 start-page: 456 year: 2006 end-page: 469 ident: bib20 article-title: Kinematic design to improve ergonomics in human machine interaction publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 43 start-page: 1390 year: 2000 end-page: 1404 ident: bib21 article-title: Maximum reach envelope for the seated and standing male and female for industrial workstation design publication-title: Ergonomics – volume: 30 start-page: 647 year: 1997 end-page: 652 ident: bib27 article-title: Parameters for modeling the upper extremity publication-title: J. Biomech. – volume: 21 start-page: 641 year: 2013 end-page: 656 ident: bib12 article-title: Evaluation of upper extremity reachable workspace using Kinect camera publication-title: Technol. Health Care – start-page: 247 year: 2013 end-page: 253 ident: bib14 article-title: Upper extremity reachable workspace evaluation with kinect publication-title: Medicine Meets Virtual Reality – volume: 12 start-page: 371 year: 2009 end-page: 384 ident: bib2 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Meth. Biomech. Biomed. Eng. – volume: 7 year: 2012 ident: bib13 article-title: Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases publication-title: PLoS One – year: 2003 ident: bib17 article-title: Applied Statistics and Probability for Engineers – year: 2009 ident: bib24 article-title: Robotics: Modelling, Planning and Control, Soft Computing – start-page: 256 year: 1998 end-page: 259 ident: bib22 article-title: A model of three dimensional maximum reach envelope based on structural anthropometric measurements publication-title: Advances in Occupational Ergonomics and Safety – volume: 12 start-page: 179 year: 2015 end-page: 187 ident: bib9 article-title: Effect of hand-held loads on the maximum reach envelope publication-title: Occup. Ergon. – volume: 47 start-page: 330 year: 2004 end-page: 342 ident: bib23 article-title: Determination of worker physiological cost in workspace reach envelopes publication-title: Ergonomics – volume: 40 start-page: 1219 year: 2007 end-page: 1227 ident: bib5 article-title: A generic detailed rigid-body lumbar spine model publication-title: J. Biomech. – volume: 2 start-page: 1 year: 2015 end-page: 8 ident: bib7 article-title: Reachable workspace reflects dynamometer-measured upper extremity strength in FSHD publication-title: Muscle Nerve – volume: 40 start-page: 203 year: 2005 end-page: 219 ident: bib10 article-title: Kinematic model for determination of human arm reachable workspace publication-title: Meccanica – volume: 24 start-page: 1239 year: 1994 end-page: 1246 ident: bib15 article-title: Simple model of human arm reachable workspace publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 171 year: 2010 end-page: 183 ident: bib1 article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems publication-title: Comput. Meth. Biomech. Biomed. Eng. – volume: 40 start-page: 86 year: 2007 end-page: 91 ident: bib11 article-title: A kinematic model of the shoulder complex to evaluate the arm-reachable workspace publication-title: J. Biomech. – start-page: 570 year: 2015 end-page: 583 ident: bib16 article-title: Calculating reachable workspace volume for use in quantitative medicine publication-title: ECCV 2014 Workshops, Part III, Lecture Notes in Computer Science – start-page: 1 year: 2013 end-page: 21 ident: bib8 article-title: Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases publication-title: PLoS Curr – year: 2006 ident: bib3 article-title: Occupational Biomechanics – start-page: 532 year: 2005 end-page: 539 ident: bib19 article-title: The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton publication-title: ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005 – volume: 20 start-page: 240 year: 2005 end-page: 260 ident: bib28 article-title: Reach envelope of a 9-degree-of freedom model of the upper extremity publication-title: Int. J. Robot. Autom. – year: 2007 ident: bib18 article-title: Biomechanically based workspace generation considering joint muscular strengths, body weight and hand load weight publication-title: Digital Human Modeling for Design and Engineering Conference and Exhibition. Seattle, Washington, USA – volume: 13 start-page: 43 year: 1994 ident: 10.1016/j.apergo.2018.09.010_bib6 article-title: Three-dimensional alpha shapes publication-title: ACM Trans. Graph. doi: 10.1145/174462.156635 – start-page: 570 year: 2015 ident: 10.1016/j.apergo.2018.09.010_bib16 article-title: Calculating reachable workspace volume for use in quantitative medicine – volume: 24 start-page: 615 year: 1991 ident: 10.1016/j.apergo.2018.09.010_bib26 article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90294-W – volume: 25 start-page: 129 year: 1992 ident: 10.1016/j.apergo.2018.09.010_bib25 article-title: Geometry parameters for musculoskeletal modelling of the shoulder system publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90270-B – volume: 3 start-page: 32 year: 2012 ident: 10.1016/j.apergo.2018.09.010_bib4 article-title: Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass publication-title: Int. J. Hum. Factors Model Simulat. doi: 10.1504/IJHFMS.2012.050071 – volume: 47 start-page: 330 year: 2004 ident: 10.1016/j.apergo.2018.09.010_bib23 article-title: Determination of worker physiological cost in workspace reach envelopes publication-title: Ergonomics doi: 10.1080/0014013032000157850 – volume: 13 start-page: 171 year: 2010 ident: 10.1016/j.apergo.2018.09.010_bib1 article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems publication-title: Comput. Meth. Biomech. Biomed. Eng. doi: 10.1080/10255840903067080 – volume: 20 start-page: 240 year: 2005 ident: 10.1016/j.apergo.2018.09.010_bib28 article-title: Reach envelope of a 9-degree-of freedom model of the upper extremity publication-title: Int. J. Robot. Autom. – start-page: 1 year: 2013 ident: 10.1016/j.apergo.2018.09.010_bib8 article-title: Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases publication-title: PLoS Curr – volume: 40 start-page: 86 year: 2007 ident: 10.1016/j.apergo.2018.09.010_bib11 article-title: A kinematic model of the shoulder complex to evaluate the arm-reachable workspace publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.11.010 – volume: 24 start-page: 1239 year: 1994 ident: 10.1016/j.apergo.2018.09.010_bib15 article-title: Simple model of human arm reachable workspace publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.299704 – start-page: 532 year: 2005 ident: 10.1016/j.apergo.2018.09.010_bib19 article-title: The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton – volume: 30 start-page: 647 year: 1997 ident: 10.1016/j.apergo.2018.09.010_bib27 article-title: Parameters for modeling the upper extremity publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00011-0 – year: 2006 ident: 10.1016/j.apergo.2018.09.010_bib3 – volume: 21 start-page: 641 year: 2013 ident: 10.1016/j.apergo.2018.09.010_bib12 article-title: Evaluation of upper extremity reachable workspace using Kinect camera publication-title: Technol. Health Care doi: 10.3233/THC-130764 – volume: 12 start-page: 371 year: 2009 ident: 10.1016/j.apergo.2018.09.010_bib2 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Meth. Biomech. Biomed. Eng. doi: 10.1080/10255840802459412 – year: 2009 ident: 10.1016/j.apergo.2018.09.010_bib24 – volume: 14 start-page: 456 year: 2006 ident: 10.1016/j.apergo.2018.09.010_bib20 article-title: Kinematic design to improve ergonomics in human machine interaction publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.881565 – year: 2007 ident: 10.1016/j.apergo.2018.09.010_bib18 article-title: Biomechanically based workspace generation considering joint muscular strengths, body weight and hand load weight – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.apergo.2018.09.010_bib7 article-title: Reachable workspace reflects dynamometer-measured upper extremity strength in FSHD publication-title: Muscle Nerve – volume: 12 start-page: 179 year: 2015 ident: 10.1016/j.apergo.2018.09.010_bib9 article-title: Effect of hand-held loads on the maximum reach envelope publication-title: Occup. Ergon. doi: 10.3233/OER-160234 – volume: 7 year: 2012 ident: 10.1016/j.apergo.2018.09.010_bib13 article-title: Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases publication-title: PLoS One doi: 10.1371/journal.pone.0045341 – start-page: 256 year: 1998 ident: 10.1016/j.apergo.2018.09.010_bib22 article-title: A model of three dimensional maximum reach envelope based on structural anthropometric measurements – year: 2003 ident: 10.1016/j.apergo.2018.09.010_bib17 – volume: 40 start-page: 203 year: 2005 ident: 10.1016/j.apergo.2018.09.010_bib10 article-title: Kinematic model for determination of human arm reachable workspace publication-title: Meccanica doi: 10.1007/s11012-005-3067-0 – start-page: 247 year: 2013 ident: 10.1016/j.apergo.2018.09.010_bib14 article-title: Upper extremity reachable workspace evaluation with kinect – volume: 40 start-page: 1219 year: 2007 ident: 10.1016/j.apergo.2018.09.010_bib5 article-title: A generic detailed rigid-body lumbar spine model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.05.030 – volume: 43 start-page: 1390 year: 2000 ident: 10.1016/j.apergo.2018.09.010_bib21 article-title: Maximum reach envelope for the seated and standing male and female for industrial workstation design publication-title: Ergonomics doi: 10.1080/001401300421824 |
SSID | ssj0008415 |
Score | 2.2557554 |
Snippet | An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Adult Body Mass Index Elbow Joint Ergonomics - methods Hand - physiology Humans Interior Design and Furnishings - methods Kinetics Male Movement Range of Motion, Articular Reachable workspace Shoulder Joint - physiology Statistical modelling Strength measurements Torso - physiology Upper extremity kinematics Workload - statistics & numerical data |
Title | The reachable 3-D workspace volume is a measure of payload and body-mass-index: A quasi-static kinetic assessment |
URI | https://dx.doi.org/10.1016/j.apergo.2018.09.010 https://www.ncbi.nlm.nih.gov/pubmed/30509515 https://www.proquest.com/docview/2149858359 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBDVehrW0Cu1KtLEtt59LbioYWqnIrEzZrYTpUWsss-Dlz62zuTx7ZIICRyiRLZiuWZfP5szzcG-JwHXeYFEvoZXrpJKyMLJnJpmUaJy50Pjtc7vl-kk0t9fmWuNuBo0MJwWGWP_R2mt2jdvznse_NwVtes8SX0JXcjp4x4WsIKdp2xl3_58y_MI9f9KQaRklx6kM-1MV44C_OfLAGM8zbbKetoHx6eHqOf7TB0-gpe9vxRjLsm7sBGaHbhxX9ZBXdhew1qd6_hlvxAzDlkkjVSQsljwaFYhCMuiA6aRL0QKG66xUIxrcSMZ_HoBTZelFN_J2-IYcs2r-JXMRa3K1zUkpVItRO_6bt8x3WGzzdweXry42gi-2MWpNNxtJSG9y7JklWWOa-IcpWlR5d6LHTsaXajVcBcE88r0cVBa5UFNIRNOtCllFNvYbOZNuE9CIOq8miSqDJa-yjBOEmrEBVV4pNYoRqBGnrXuj4HOR-FcW2HYLNftrOJZZvYqLBkkxHIda1Zl4PjifLZYDh7z5csDRNP1Pw02NnSb8Z7J9iE6WphE5pJ5oboajGCd50DrNuiOIcO8cIPz_7uR9imp6KLBt-DzeV8FfaJ7CzLg9abD2BrfPZtcvEXIRL-WQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Reig9oJa2dEtLXalXlyS2swk3xEMLBU4gcbMmtoPSQnbZx4FLfzszeWxbqRUSuURKbNnyjD9_Y8-MAb5mQRdZjoR-hrdu0tLInIlcWqRR4jLng-P9jrPzdHSpT67M1Qrs97Ew7FbZYX-L6Q1ad192utHcmVQVx_gS-pK6kVJGbJY8g-eapi9fY_Dt128_j0x31xhESnLxPn6ucfLCSZhecwxgnDXpTjmQ9t_r0__4Z7MOHb2C9Y5Air22j69hJdQb8PKPtIIbsLZEtfs3cEeKIKbsM8lBUkLJA8G-WAQkLogWm0Q1Eyhu291CMS7FhM149AJrL4qxv5e3RLFlk1hxV-yJuwXOKsmhSJUTP6ldfuMyxedbuDw6vNgfye6eBel0HM2l4cNLEmU5HDqviHMVhUeXesx17Mm80SpgponoFejioLUaBjQETjrQo5RT72C1HtfhPQiDqvRokqg0WvsowThJyxDlZeKTWKEagOpH17ouCTnfhXFje2-zH7aViWWZ2Ci3JJMByGWtSZuE45Hyw15w9i9lsrROPFLzSy9nS_OMD0-wDuPFzCZkSmaG-Go-gM1WAZZ9UZxEh4jhhye3-xlejC7OTu3p8fn3LVijP3nrGv4RVufTRfhEzGdebDea_QDjw__n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reachable+3-D+workspace+volume+is+a+measure+of+payload+and+body-mass-index%3A+A+quasi-static+kinetic+assessment&rft.jtitle=Applied+ergonomics&rft.au=Castro%2C+Miguel+Nobre&rft.au=Rasmussen%2C+John&rft.au=Bai%2C+Shaoping&rft.au=Andersen%2C+Michael+Skipper&rft.date=2019-02-01&rft.eissn=1872-9126&rft.volume=75&rft.spage=108&rft_id=info:doi/10.1016%2Fj.apergo.2018.09.010&rft_id=info%3Apmid%2F30509515&rft.externalDocID=30509515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6870&client=summon |