The reachable 3-D workspace volume is a measure of payload and body-mass-index: A quasi-static kinetic assessment

An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its...

Full description

Saved in:
Bibliographic Details
Published inApplied ergonomics Vol. 75; pp. 108 - 119
Main Authors Castro, Miguel Nobre, Rasmussen, John, Bai, Shaoping, Andersen, Michael Skipper
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = −0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index. [Display omitted] •A new experimental protocol is proposed for assessing the reachable 3-D workspace.•Alpha-shapes enable retrieval of the non-convex shape of all reachable envelopes.•The reachable 3-D workspace volume inversely correlates to payload.•Payload and body-mass-index predicted 73% of the variation in the RWS volume.
AbstractList An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.
An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = −0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index. [Display omitted] •A new experimental protocol is proposed for assessing the reachable 3-D workspace.•Alpha-shapes enable retrieval of the non-convex shape of all reachable envelopes.•The reachable 3-D workspace volume inversely correlates to payload.•Payload and body-mass-index predicted 73% of the variation in the RWS volume.
An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = -0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, R  = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.
Author Bai, Shaoping
Andersen, Michael Skipper
Rasmussen, John
Castro, Miguel Nobre
Author_xml – sequence: 1
  givenname: Miguel Nobre
  orcidid: 0000-0001-5137-0368
  surname: Castro
  fullname: Castro, Miguel Nobre
  email: mnc@mp.aau.dk
– sequence: 2
  givenname: John
  orcidid: 0000-0003-3257-5653
  surname: Rasmussen
  fullname: Rasmussen, John
  email: jr@mp.aau.dk
– sequence: 3
  givenname: Shaoping
  surname: Bai
  fullname: Bai, Shaoping
  email: shb@mp.aau.dk
– sequence: 4
  givenname: Michael Skipper
  surname: Andersen
  fullname: Andersen, Michael Skipper
  email: msa@mp.aau.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30509515$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFP3DAQha0KVBbaf1BVPvaS1I6dxOFQCdFCkZC4wNma2LPFS2Jn7QS6_75eLVx6aOcyGul7TzPzTsmRDx4J-cRZyRlvvm5KmDD-CmXFuCpZVzLO3pEVV21VdLxqjsiKMSaKRrXshJymtMmjkrx-T04Eq1lX83pFtvePSCOCeYR-QCqK7_QlxKc0gUH6HIZlROoSBToipCUiDWs6wW4IYCl4S_tgd8UIKRXOW_x9Ti_odoHkijTD7Ax9ch73PROY0oh-_kCO1zAk_Pjaz8jD1Y_7y5_F7d31zeXFbWEkZ3NRc8EqNGbdtsaKvG3fWzCNhU5y2zSNFAhKdqLqwXCUUrQItVKtxFxCGHFGvhx8pxi2C6ZZjy4ZHAbwGJakKy47VStRdxn9_Iou_YhWT9GNEHf67U0ZOD8AJoaUIq61cfv7gp8juEFzpveZ6I0-ZKL3mWjW6ZxJFsu_xG_-_5F9O8gwP-nZYdTJOPQGrYtoZm2D-7fBH147qHE
CitedBy_id crossref_primary_10_1177_09544062241295631
crossref_primary_10_1016_j_mechmachtheory_2018_11_007
crossref_primary_10_1115_1_4047462
crossref_primary_10_1007_s12008_021_00779_9
crossref_primary_10_1016_j_jbiomech_2021_110939
crossref_primary_10_1016_j_jbiomech_2019_04_037
crossref_primary_10_1109_TNSRE_2020_3010625
Cites_doi 10.1145/174462.156635
10.1016/0021-9290(91)90294-W
10.1016/0021-9290(92)90270-B
10.1504/IJHFMS.2012.050071
10.1080/0014013032000157850
10.1080/10255840903067080
10.1016/j.jbiomech.2005.11.010
10.1109/21.299704
10.1016/S0021-9290(97)00011-0
10.3233/THC-130764
10.1080/10255840802459412
10.1109/TNSRE.2006.881565
10.3233/OER-160234
10.1371/journal.pone.0045341
10.1007/s11012-005-3067-0
10.1016/j.jbiomech.2006.05.030
10.1080/001401300421824
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.apergo.2018.09.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Psychology
EISSN 1872-9126
EndPage 119
ExternalDocumentID 30509515
10_1016_j_apergo_2018_09_010
S0003687018304071
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
3EH
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACIWK
ACKIV
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSV
SSZ
T5K
TAE
TN5
UAP
UHS
UPT
VH1
WH7
WUQ
X6Y
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
ID FETCH-LOGICAL-c410t-51302eccf77cd3095bbdac6da941d66643ea84932bac1e4437ea58874eeee33c3
IEDL.DBID .~1
ISSN 0003-6870
1872-9126
IngestDate Mon Jul 21 09:43:15 EDT 2025
Wed Feb 19 02:35:00 EST 2025
Tue Jul 01 03:09:26 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Fri Feb 23 02:27:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Strength measurements
Reachable workspace
Upper extremity kinematics
Statistical modelling
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-51302eccf77cd3095bbdac6da941d66643ea84932bac1e4437ea58874eeee33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3257-5653
0000-0001-5137-0368
PMID 30509515
PQID 2149858359
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2149858359
pubmed_primary_30509515
crossref_citationtrail_10_1016_j_apergo_2018_09_010
crossref_primary_10_1016_j_apergo_2018_09_010
elsevier_sciencedirect_doi_10_1016_j_apergo_2018_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Applied ergonomics
PublicationTitleAlternate Appl Ergon
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Klopčar, Tomšič, Lenarčič (bib11) 2007; 40
Han, Kurillo, Abresch, Nicorici, Bajcsy (bib8) 2013
Sengupta, Das, AK, Das (bib21) 2000; 43
Matthew, Kurillo, Han, Bajcsy (bib16) 2015
Montgomery, Runger (bib17) 2003
Siciliano, Sciavicco, Villani, Oriolo (bib24) 2009
Kurillo, Han, Obdržálek, Yan, Abresch, Nicorici, Bajcsy (bib14) 2013
Andersen, Damsgaard, Rasmussen (bib2) 2009; 12
de Zee, Hansen, Wong, Rasmussen, Simonsen (bib5) 2007; 40
Sengupta, Das (bib23) 2004; 47
Kurillo, Chen, Bajcsy, Han (bib12) 2013; 21
Veeger, Yu, An, Rozendal (bib27) 1997; 30
Yang, Abdel-Malek, Nebel (bib28) 2005; 20
Rosen, Perry, Manning, Burns, Hannaford (bib19) 2005
D'Souza, Rasmussen, Schwirtz (bib4) 2012; 3
Han, de Bie, Nicorici, Abresch, Bajcsy, Kurillo (bib7) 2015; 2
Van der Helm, Veeger, Pronk, Van der Woude, Rozendal (bib25) 1992; 25
Johnston, Dewis, Kozey (bib9) 2015; 12
Schiele, van der Helm (bib20) 2006; 14
Park (bib18) 2007
Sengupta, Das (bib22) 1998
Veeger, Van Der Helm, Van Der Woude, Pronk, Rozendal (bib26) 1991; 24
Kurillo, Han, Abresch, Nicorici, Yan, Bajcsy (bib13) 2012; 7
Lenarcic, Umek (bib15) 1994; 24
Chaffin, Andersson, Martin (bib3) 2006
Edelsbrunner, Mücke (bib6) 1994; 13
Andersen, Damsgaard, MacWilliams, Rasmussen (bib1) 2010; 13
Klopčar, Lenarčič (bib10) 2005; 40
Edelsbrunner (10.1016/j.apergo.2018.09.010_bib6) 1994; 13
de Zee (10.1016/j.apergo.2018.09.010_bib5) 2007; 40
Yang (10.1016/j.apergo.2018.09.010_bib28) 2005; 20
Kurillo (10.1016/j.apergo.2018.09.010_bib14) 2013
Veeger (10.1016/j.apergo.2018.09.010_bib26) 1991; 24
Han (10.1016/j.apergo.2018.09.010_bib7) 2015; 2
Sengupta (10.1016/j.apergo.2018.09.010_bib23) 2004; 47
Siciliano (10.1016/j.apergo.2018.09.010_bib24) 2009
Andersen (10.1016/j.apergo.2018.09.010_bib1) 2010; 13
Schiele (10.1016/j.apergo.2018.09.010_bib20) 2006; 14
Johnston (10.1016/j.apergo.2018.09.010_bib9) 2015; 12
Van der Helm (10.1016/j.apergo.2018.09.010_bib25) 1992; 25
Klopčar (10.1016/j.apergo.2018.09.010_bib11) 2007; 40
Park (10.1016/j.apergo.2018.09.010_bib18) 2007
Rosen (10.1016/j.apergo.2018.09.010_bib19) 2005
Klopčar (10.1016/j.apergo.2018.09.010_bib10) 2005; 40
Andersen (10.1016/j.apergo.2018.09.010_bib2) 2009; 12
Kurillo (10.1016/j.apergo.2018.09.010_bib12) 2013; 21
Lenarcic (10.1016/j.apergo.2018.09.010_bib15) 1994; 24
Chaffin (10.1016/j.apergo.2018.09.010_bib3) 2006
Sengupta (10.1016/j.apergo.2018.09.010_bib22) 1998
Kurillo (10.1016/j.apergo.2018.09.010_bib13) 2012; 7
Sengupta (10.1016/j.apergo.2018.09.010_bib21) 2000; 43
Montgomery (10.1016/j.apergo.2018.09.010_bib17) 2003
Veeger (10.1016/j.apergo.2018.09.010_bib27) 1997; 30
Matthew (10.1016/j.apergo.2018.09.010_bib16) 2015
D'Souza (10.1016/j.apergo.2018.09.010_bib4) 2012; 3
Han (10.1016/j.apergo.2018.09.010_bib8) 2013
References_xml – volume: 13
  start-page: 43
  year: 1994
  end-page: 72
  ident: bib6
  article-title: Three-dimensional alpha shapes
  publication-title: ACM Trans. Graph.
– volume: 24
  start-page: 615
  year: 1991
  end-page: 629
  ident: bib26
  article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomech.
– volume: 3
  start-page: 32
  year: 2012
  end-page: 47
  ident: bib4
  article-title: Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass
  publication-title: Int. J. Hum. Factors Model Simulat.
– volume: 25
  start-page: 129
  year: 1992
  end-page: 144
  ident: bib25
  article-title: Geometry parameters for musculoskeletal modelling of the shoulder system
  publication-title: J. Biomech.
– volume: 14
  start-page: 456
  year: 2006
  end-page: 469
  ident: bib20
  article-title: Kinematic design to improve ergonomics in human machine interaction
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 43
  start-page: 1390
  year: 2000
  end-page: 1404
  ident: bib21
  article-title: Maximum reach envelope for the seated and standing male and female for industrial workstation design
  publication-title: Ergonomics
– volume: 30
  start-page: 647
  year: 1997
  end-page: 652
  ident: bib27
  article-title: Parameters for modeling the upper extremity
  publication-title: J. Biomech.
– volume: 21
  start-page: 641
  year: 2013
  end-page: 656
  ident: bib12
  article-title: Evaluation of upper extremity reachable workspace using Kinect camera
  publication-title: Technol. Health Care
– start-page: 247
  year: 2013
  end-page: 253
  ident: bib14
  article-title: Upper extremity reachable workspace evaluation with kinect
  publication-title: Medicine Meets Virtual Reality
– volume: 12
  start-page: 371
  year: 2009
  end-page: 384
  ident: bib2
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
– volume: 7
  year: 2012
  ident: bib13
  article-title: Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases
  publication-title: PLoS One
– year: 2003
  ident: bib17
  article-title: Applied Statistics and Probability for Engineers
– year: 2009
  ident: bib24
  article-title: Robotics: Modelling, Planning and Control, Soft Computing
– start-page: 256
  year: 1998
  end-page: 259
  ident: bib22
  article-title: A model of three dimensional maximum reach envelope based on structural anthropometric measurements
  publication-title: Advances in Occupational Ergonomics and Safety
– volume: 12
  start-page: 179
  year: 2015
  end-page: 187
  ident: bib9
  article-title: Effect of hand-held loads on the maximum reach envelope
  publication-title: Occup. Ergon.
– volume: 47
  start-page: 330
  year: 2004
  end-page: 342
  ident: bib23
  article-title: Determination of worker physiological cost in workspace reach envelopes
  publication-title: Ergonomics
– volume: 40
  start-page: 1219
  year: 2007
  end-page: 1227
  ident: bib5
  article-title: A generic detailed rigid-body lumbar spine model
  publication-title: J. Biomech.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib7
  article-title: Reachable workspace reflects dynamometer-measured upper extremity strength in FSHD
  publication-title: Muscle Nerve
– volume: 40
  start-page: 203
  year: 2005
  end-page: 219
  ident: bib10
  article-title: Kinematic model for determination of human arm reachable workspace
  publication-title: Meccanica
– volume: 24
  start-page: 1239
  year: 1994
  end-page: 1246
  ident: bib15
  article-title: Simple model of human arm reachable workspace
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 13
  start-page: 171
  year: 2010
  end-page: 183
  ident: bib1
  article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
– volume: 40
  start-page: 86
  year: 2007
  end-page: 91
  ident: bib11
  article-title: A kinematic model of the shoulder complex to evaluate the arm-reachable workspace
  publication-title: J. Biomech.
– start-page: 570
  year: 2015
  end-page: 583
  ident: bib16
  article-title: Calculating reachable workspace volume for use in quantitative medicine
  publication-title: ECCV 2014 Workshops, Part III, Lecture Notes in Computer Science
– start-page: 1
  year: 2013
  end-page: 21
  ident: bib8
  article-title: Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases
  publication-title: PLoS Curr
– year: 2006
  ident: bib3
  article-title: Occupational Biomechanics
– start-page: 532
  year: 2005
  end-page: 539
  ident: bib19
  article-title: The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton
  publication-title: ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005
– volume: 20
  start-page: 240
  year: 2005
  end-page: 260
  ident: bib28
  article-title: Reach envelope of a 9-degree-of freedom model of the upper extremity
  publication-title: Int. J. Robot. Autom.
– year: 2007
  ident: bib18
  article-title: Biomechanically based workspace generation considering joint muscular strengths, body weight and hand load weight
  publication-title: Digital Human Modeling for Design and Engineering Conference and Exhibition. Seattle, Washington, USA
– volume: 13
  start-page: 43
  year: 1994
  ident: 10.1016/j.apergo.2018.09.010_bib6
  article-title: Three-dimensional alpha shapes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/174462.156635
– start-page: 570
  year: 2015
  ident: 10.1016/j.apergo.2018.09.010_bib16
  article-title: Calculating reachable workspace volume for use in quantitative medicine
– volume: 24
  start-page: 615
  year: 1991
  ident: 10.1016/j.apergo.2018.09.010_bib26
  article-title: Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90294-W
– volume: 25
  start-page: 129
  year: 1992
  ident: 10.1016/j.apergo.2018.09.010_bib25
  article-title: Geometry parameters for musculoskeletal modelling of the shoulder system
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90270-B
– volume: 3
  start-page: 32
  year: 2012
  ident: 10.1016/j.apergo.2018.09.010_bib4
  article-title: Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass
  publication-title: Int. J. Hum. Factors Model Simulat.
  doi: 10.1504/IJHFMS.2012.050071
– volume: 47
  start-page: 330
  year: 2004
  ident: 10.1016/j.apergo.2018.09.010_bib23
  article-title: Determination of worker physiological cost in workspace reach envelopes
  publication-title: Ergonomics
  doi: 10.1080/0014013032000157850
– volume: 13
  start-page: 171
  year: 2010
  ident: 10.1016/j.apergo.2018.09.010_bib1
  article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
  doi: 10.1080/10255840903067080
– volume: 20
  start-page: 240
  year: 2005
  ident: 10.1016/j.apergo.2018.09.010_bib28
  article-title: Reach envelope of a 9-degree-of freedom model of the upper extremity
  publication-title: Int. J. Robot. Autom.
– start-page: 1
  year: 2013
  ident: 10.1016/j.apergo.2018.09.010_bib8
  article-title: Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases
  publication-title: PLoS Curr
– volume: 40
  start-page: 86
  year: 2007
  ident: 10.1016/j.apergo.2018.09.010_bib11
  article-title: A kinematic model of the shoulder complex to evaluate the arm-reachable workspace
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.11.010
– volume: 24
  start-page: 1239
  year: 1994
  ident: 10.1016/j.apergo.2018.09.010_bib15
  article-title: Simple model of human arm reachable workspace
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299704
– start-page: 532
  year: 2005
  ident: 10.1016/j.apergo.2018.09.010_bib19
  article-title: The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton
– volume: 30
  start-page: 647
  year: 1997
  ident: 10.1016/j.apergo.2018.09.010_bib27
  article-title: Parameters for modeling the upper extremity
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00011-0
– year: 2006
  ident: 10.1016/j.apergo.2018.09.010_bib3
– volume: 21
  start-page: 641
  year: 2013
  ident: 10.1016/j.apergo.2018.09.010_bib12
  article-title: Evaluation of upper extremity reachable workspace using Kinect camera
  publication-title: Technol. Health Care
  doi: 10.3233/THC-130764
– volume: 12
  start-page: 371
  year: 2009
  ident: 10.1016/j.apergo.2018.09.010_bib2
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Meth. Biomech. Biomed. Eng.
  doi: 10.1080/10255840802459412
– year: 2009
  ident: 10.1016/j.apergo.2018.09.010_bib24
– volume: 14
  start-page: 456
  year: 2006
  ident: 10.1016/j.apergo.2018.09.010_bib20
  article-title: Kinematic design to improve ergonomics in human machine interaction
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.881565
– year: 2007
  ident: 10.1016/j.apergo.2018.09.010_bib18
  article-title: Biomechanically based workspace generation considering joint muscular strengths, body weight and hand load weight
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.apergo.2018.09.010_bib7
  article-title: Reachable workspace reflects dynamometer-measured upper extremity strength in FSHD
  publication-title: Muscle Nerve
– volume: 12
  start-page: 179
  year: 2015
  ident: 10.1016/j.apergo.2018.09.010_bib9
  article-title: Effect of hand-held loads on the maximum reach envelope
  publication-title: Occup. Ergon.
  doi: 10.3233/OER-160234
– volume: 7
  year: 2012
  ident: 10.1016/j.apergo.2018.09.010_bib13
  article-title: Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045341
– start-page: 256
  year: 1998
  ident: 10.1016/j.apergo.2018.09.010_bib22
  article-title: A model of three dimensional maximum reach envelope based on structural anthropometric measurements
– year: 2003
  ident: 10.1016/j.apergo.2018.09.010_bib17
– volume: 40
  start-page: 203
  year: 2005
  ident: 10.1016/j.apergo.2018.09.010_bib10
  article-title: Kinematic model for determination of human arm reachable workspace
  publication-title: Meccanica
  doi: 10.1007/s11012-005-3067-0
– start-page: 247
  year: 2013
  ident: 10.1016/j.apergo.2018.09.010_bib14
  article-title: Upper extremity reachable workspace evaluation with kinect
– volume: 40
  start-page: 1219
  year: 2007
  ident: 10.1016/j.apergo.2018.09.010_bib5
  article-title: A generic detailed rigid-body lumbar spine model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.05.030
– volume: 43
  start-page: 1390
  year: 2000
  ident: 10.1016/j.apergo.2018.09.010_bib21
  article-title: Maximum reach envelope for the seated and standing male and female for industrial workstation design
  publication-title: Ergonomics
  doi: 10.1080/001401300421824
SSID ssj0008415
Score 2.2557554
Snippet An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Adult
Body Mass Index
Elbow Joint
Ergonomics - methods
Hand - physiology
Humans
Interior Design and Furnishings - methods
Kinetics
Male
Movement
Range of Motion, Articular
Reachable workspace
Shoulder Joint - physiology
Statistical modelling
Strength measurements
Torso - physiology
Upper extremity kinematics
Workload - statistics & numerical data
Title The reachable 3-D workspace volume is a measure of payload and body-mass-index: A quasi-static kinetic assessment
URI https://dx.doi.org/10.1016/j.apergo.2018.09.010
https://www.ncbi.nlm.nih.gov/pubmed/30509515
https://www.proquest.com/docview/2149858359
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBDVehrW0Cu1KtLEtt59LbioYWqnIrEzZrYTpUWsss-Dlz62zuTx7ZIICRyiRLZiuWZfP5szzcG-JwHXeYFEvoZXrpJKyMLJnJpmUaJy50Pjtc7vl-kk0t9fmWuNuBo0MJwWGWP_R2mt2jdvznse_NwVtes8SX0JXcjp4x4WsIKdp2xl3_58y_MI9f9KQaRklx6kM-1MV44C_OfLAGM8zbbKetoHx6eHqOf7TB0-gpe9vxRjLsm7sBGaHbhxX9ZBXdhew1qd6_hlvxAzDlkkjVSQsljwaFYhCMuiA6aRL0QKG66xUIxrcSMZ_HoBTZelFN_J2-IYcs2r-JXMRa3K1zUkpVItRO_6bt8x3WGzzdweXry42gi-2MWpNNxtJSG9y7JklWWOa-IcpWlR5d6LHTsaXajVcBcE88r0cVBa5UFNIRNOtCllFNvYbOZNuE9CIOq8miSqDJa-yjBOEmrEBVV4pNYoRqBGnrXuj4HOR-FcW2HYLNftrOJZZvYqLBkkxHIda1Zl4PjifLZYDh7z5csDRNP1Pw02NnSb8Z7J9iE6WphE5pJ5oboajGCd50DrNuiOIcO8cIPz_7uR9imp6KLBt-DzeV8FfaJ7CzLg9abD2BrfPZtcvEXIRL-WQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Reig9oJa2dEtLXalXlyS2swk3xEMLBU4gcbMmtoPSQnbZx4FLfzszeWxbqRUSuURKbNnyjD9_Y8-MAb5mQRdZjoR-hrdu0tLInIlcWqRR4jLng-P9jrPzdHSpT67M1Qrs97Ew7FbZYX-L6Q1ad192utHcmVQVx_gS-pK6kVJGbJY8g-eapi9fY_Dt128_j0x31xhESnLxPn6ucfLCSZhecwxgnDXpTjmQ9t_r0__4Z7MOHb2C9Y5Air22j69hJdQb8PKPtIIbsLZEtfs3cEeKIKbsM8lBUkLJA8G-WAQkLogWm0Q1Eyhu291CMS7FhM149AJrL4qxv5e3RLFlk1hxV-yJuwXOKsmhSJUTP6ldfuMyxedbuDw6vNgfye6eBel0HM2l4cNLEmU5HDqviHMVhUeXesx17Mm80SpgponoFejioLUaBjQETjrQo5RT72C1HtfhPQiDqvRokqg0WvsowThJyxDlZeKTWKEagOpH17ouCTnfhXFje2-zH7aViWWZ2Ci3JJMByGWtSZuE45Hyw15w9i9lsrROPFLzSy9nS_OMD0-wDuPFzCZkSmaG-Go-gM1WAZZ9UZxEh4jhhye3-xlejC7OTu3p8fn3LVijP3nrGv4RVufTRfhEzGdebDea_QDjw__n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reachable+3-D+workspace+volume+is+a+measure+of+payload+and+body-mass-index%3A+A+quasi-static+kinetic+assessment&rft.jtitle=Applied+ergonomics&rft.au=Castro%2C+Miguel+Nobre&rft.au=Rasmussen%2C+John&rft.au=Bai%2C+Shaoping&rft.au=Andersen%2C+Michael+Skipper&rft.date=2019-02-01&rft.eissn=1872-9126&rft.volume=75&rft.spage=108&rft_id=info:doi/10.1016%2Fj.apergo.2018.09.010&rft_id=info%3Apmid%2F30509515&rft.externalDocID=30509515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6870&client=summon