The reachable 3-D workspace volume is a measure of payload and body-mass-index: A quasi-static kinetic assessment
An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its...
Saved in:
Published in | Applied ergonomics Vol. 75; pp. 108 - 119 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An experimental protocol with five tasks is proposed for a low-cost empirical assessment of the reachable 3-D workspace (RWS), including both close-to-torso and far-from-torso regions. Ten participants repeated the protocol for four distinct hand payloads. The RWS expressed as a point cloud and its non-convex alpha-shape were obtained for each case. Moreover, individual strength surrogates for glenohumeral flexion and abduction, and elbow flexion were collected using a dynamometer. The RWS volume was statistically modelled using payload, body-mass-index and the strength surrogates as predictors. For increasing payload, a significant (r = −0.736,p < 0.001) decrease in RWS volume was found for distinct payload cases across all subjects. The only significant predictors found for the RWS volume were normalized payload (F = 73.740,p < 0.001) and body-mass-index (F = 11.008,p = 0.003). No significant interactions were found. The consequent regression model (F(2,27) = 41.11, p < 0.001, Radj2 = 0.7345) explained around 73% of the variation in the data. The RWS volume is a function of payload and body-mass-index.
[Display omitted]
•A new experimental protocol is proposed for assessing the reachable 3-D workspace.•Alpha-shapes enable retrieval of the non-convex shape of all reachable envelopes.•The reachable 3-D workspace volume inversely correlates to payload.•Payload and body-mass-index predicted 73% of the variation in the RWS volume. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-6870 1872-9126 1872-9126 |
DOI: | 10.1016/j.apergo.2018.09.010 |