The Snomipede: A parallel platform for scanning near-field photolithography

Using scanning near-field lithography (SNP), it is possible to pattern molecules at surfaces with a resolution as good as 9 nm [M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies and G. J. Leggett, Langmuir 23 (13), 7328–7337 (2007)]. However, in common with othe...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research Vol. 26; no. 24; pp. 2997 - 3008
Main Authors ul-Haq, Ehtsham, Liu, Zhuming, Zhang, Yuan, Alang Ahmad, Shahrul A., Wong, Lu Shin, Hobbs, Jamie K., Leggett, Graham J., Micklefield, Jason, Roberts, Clive J., Weaver, John M.R.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 28.12.2011
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using scanning near-field lithography (SNP), it is possible to pattern molecules at surfaces with a resolution as good as 9 nm [M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies and G. J. Leggett, Langmuir 23 (13), 7328–7337 (2007)]. However, in common with other scanning probe techniques, SNP has previously been considered a serial process, hindering its use in many applications. IBM’s “Millipede” addresses this problem by utilizing an array of local probes operating in parallel. Here, we describe the construction of two instruments (Snomipedes) that integrate near-field optical methods into the parallel probe paradigm and promise the integration of top–down and bottom–up fabrication methods over macroscopic areas. Both are capable of performing near-field lithography with 16 probes in parallel spanning approximately 2 mm. The instruments can work in both ambient and liquid environments, key to many applications in nanobiology. In both, separate control of writing is possible for each probe. We demonstrate the deprotection of self-assembled monolayers of alkylsilanes with photocleavable protecting groups and subsequent growth of nanostructured polymer brushes from these nanopatterned surfaces by atom-transfer radical polymerization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2011.370