The β-amyloid peptide compromises Reelin signaling in Alzheimer’s disease

Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cel...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 31646
Main Authors Cuchillo-Ibañez, Inmaculada, Mata-Balaguer, Trinidad, Balmaceda, Valeria, Arranz, Juan José, Nimpf, Johannes, Sáez-Valero, Javier
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.08.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cells led to increase expression of Reelin, but secreted Reelin results trapped together with Aβ aggregates. In frontal cortex extracts an increase in Reelin mRNA and in soluble and insoluble (guanidine-extractable) Reelin protein, was associated with late Braak stages of Alzheimer’s disease (AD), while expression of its receptor, ApoER2, did not change. However, Reelin-dependent induction of Dab1 phosphorylation appeared reduced in AD. In cells, Aβ reduced the capacity of Reelin to induce internalization of biotinylated ApoER2 and ApoER2 processing. Soluble proteolytic fragments of ApoER2 generated after Reelin binding can be detected in cerebrospinal fluid (CSF). Quantification of these soluble fragments in CSF could be a tool to evaluate the efficiency of Reelin signaling in the brain. These CSF-ApoER2 fragments correlated with Reelin levels only in control subjects, not in AD, where these fragments diminished. We conclude that while Reelin expression is enhanced in the Alzheimer’s brain, the interaction of Reelin with Aβ hinders its biological activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep31646