System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation
Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on s...
Saved in:
Published in | Journal of neural engineering Vol. 16; no. 5; pp. 56005 - 56020 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/ab08c8 |
Cover
Loading…
Abstract | Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors. |
---|---|
AbstractList | Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns.OBJECTIVEThe aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns.After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability.APPROACHAfter applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability.For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text].MAIN RESULTSFor ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text].Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.SIGNIFICANCEOur approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors. Objective . The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach . After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results . For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance . Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text]. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors. |
Author | Cardoso, Vivianne Delisle-Rodriguez, Denis Alejandra Romero-Laiseca, Maria Bastos-Filho, Teodiano Gurve, Dharmendra Krishnan, Sridhar Loterio, Flavia |
Author_xml | – sequence: 1 givenname: Denis orcidid: 0000-0002-8937-031X surname: Delisle-Rodriguez fullname: Delisle-Rodriguez, Denis email: delisle05@gmail.com organization: University of Oriente Center of Medical Biophysics, 90500-Santiago de Cuba, Cuba – sequence: 2 givenname: Vivianne surname: Cardoso fullname: Cardoso, Vivianne organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil – sequence: 3 givenname: Dharmendra surname: Gurve fullname: Gurve, Dharmendra organization: Ryerson University Department of Electrical, Computer, and Biomedical Engineering, Toronto, ON M5B 2K3, Canada – sequence: 4 givenname: Flavia surname: Loterio fullname: Loterio, Flavia organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil – sequence: 5 givenname: Maria surname: Alejandra Romero-Laiseca fullname: Alejandra Romero-Laiseca, Maria organization: Federal University of Espirito Santo Postgraduate Program in Electrical Engineering, 29075-910 Vitoria, Brazil – sequence: 6 givenname: Sridhar orcidid: 0000-0002-4659-564X surname: Krishnan fullname: Krishnan, Sridhar organization: Ryerson University Department of Electrical, Computer, and Biomedical Engineering, Toronto, ON M5B 2K3, Canada – sequence: 7 givenname: Teodiano orcidid: 0000-0002-1185-2773 surname: Bastos-Filho fullname: Bastos-Filho, Teodiano organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30786265$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URD_gzgn5Rg8NHTtrx8sNVhQqVeqhcLZsZ7J4ldjBTrTa_vV4tdseEHDyyPN7I733zslJiAEJecvgAwOlrlmzYBUXgl8bC8qpF-Ts-evkeZZwSs5z3gDUrFnCK3JaQ6Mkl-KMbB92ecKBWpOxpTHQPNsNuqnKIzrfeVc2oc10ijShi-vgH5GO2JrehzUd4hQT9YNZY9p9LNDWpAIb-nl1S7uy6uMWU9X7wRb5T2N97ycz-Rhek5ed6TO-Ob4X5MfNl--rb9Xd_dfb1ae7yi0YTBW3TlplmWq4EVLKmoMUouOtARCNZK2VaPjSqlo1HXaArWONZcWn6ixwXl-Qy8PdMcVfM-ZJDz477HsTMM5Zc6YWoga-bAr67ojOdsBWj6kYSzv9FFYB5AFwKeacsNPu6GZKxveagd63ovex630F-tBKEcIfwqfb_5G8P0h8HPUmzimUlPQmoGZSCw2lVBB6bLtCXv2F_Ofh33Q7qm0 |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1109_TNSRE_2021_3132944 crossref_primary_10_1089_brain_2024_0005 crossref_primary_10_1007_s42600_021_00196_7 crossref_primary_10_3390_jpm13010046 crossref_primary_10_1088_1741_2552_ad48b9 crossref_primary_10_1109_JBHI_2024_3395910 crossref_primary_10_1109_TNSRE_2022_3198434 crossref_primary_10_3390_signals3020024 crossref_primary_10_1038_s41598_020_63303_1 crossref_primary_10_3389_fninf_2024_1345425 crossref_primary_10_1123_mc_2020_0041 crossref_primary_10_3390_app12052736 crossref_primary_10_1088_1741_2552_acb73b crossref_primary_10_3390_electronics12224697 crossref_primary_10_3390_electronics9010174 crossref_primary_10_1007_s42600_024_00372_5 crossref_primary_10_15622_ia_2021_20_1_4 crossref_primary_10_1109_TNSRE_2020_2974056 crossref_primary_10_1080_10255842_2023_2207705 crossref_primary_10_1109_JSEN_2020_3005968 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1088_2057_1976_ad2e35 crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_7736_JKSPE_024_040 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_1007_s42600_023_00329_0 crossref_primary_10_1109_MSP_2023_3278074 crossref_primary_10_3390_s22052028 crossref_primary_10_1155_2020_8846021 |
Cites_doi | 10.1109/MSP.2008.4408441 10.1016/j.clinph.2014.05.003 10.3389/fnins.2018.00276 10.1088/1741-2560/12/3/036007 10.1001/jama.296.17.2095 10.1016/j.neucom.2009.03.005 10.3389/fnhum.2016.00061 10.1109/TNSRE.2007.903919 10.1016/j.robot.2016.12.015 10.1007/s10846-018-0888-3 10.1016/j.medengphy.2012.12.005 10.1093/brain/awr077 10.1109/TNSRE.2012.2191574 10.1007/s40313-013-0002-9 10.1177/1545968305279279 10.1088/1741-2560/1/2/001 10.1371/journal.pone.0098019 10.1109/TBME.2014.2313867 10.1016/S0013-4694(97)00022-2 10.4304/jcp.9.9.2159-2166 10.3390/s140712410 10.3389/fninf.2017.00045 10.1088/1741-2560/12/5/056009 10.3389/fnins.2017.00400 10.1177/1545968307300697 10.1088/1741-2560/13/3/031001 10.1109/TBME.2007.897815 10.1016/j.neucom.2011.10.021 10.1002/ana.23879 10.3389/fnsys.2015.00048 10.1186/1743-0003-8-47 10.1097/00001756-199505090-00012 10.3390/s17122725 10.3389/fnins.2012.00039 10.1038/s41467-018-04673-z 10.1097/01.PHM.0000064722.01940.E4 10.1016/S1388-2457(99)00141-8 10.1016/j.neucom.2012.12.039 10.1109/TASE.2016.2527716 10.1371/journal.pone.0193235 10.3390/s17122751 10.1186/1743-0003-12-1 10.1016/j.clinph.2013.05.006 10.3389/fnins.2013.00084 10.1186/1743-0003-11-9 10.1097/PHM.0b013e318269d9a3 10.1007/s00221-008-1373-1 10.1177/1545968308317436 10.1016/j.ijpsycho.2014.07.009 10.3390/s18041136 10.1007/s00221-012-3026-7 10.1001/jama.292.15.1853 10.1109/TNSRE.2012.2212914 10.1109/TBME.2013.2294203 10.1088/1741-2560/5/2/001 10.1162/089892902760191072 10.1088/1741-2560/4/2/001 10.1186/1471-2377-11-116 10.1142/S0129065716500295 10.1016/S1388-2457(03)00067-1 10.1088/1741-2560/8/2/025027 10.1186/1471-2377-13-141 10.1161/STROKEAHA.107.505313 10.1016/j.apmr.2004.10.002 10.1111/j.1747-4949.2011.00728.x 10.1016/j.clinph.2017.07.196 10.1016/j.jelekin.2005.06.001 10.1093/ptj/71.4.334 10.1046/j.1525-1403.2003.03017.x 10.1590/2446-4740.07417 10.1109/TBME.2011.2172210 10.1016/j.clinph.2012.08.021 10.1080/026990596124566 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1741-2552/ab08c8 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation |
EISSN | 1741-2552 |
ExternalDocumentID | 30786265 10_1088_1741_2552_ab08c8 jneab08c8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 TSCCA W28 XPP AAYXX ADEQX CITATION NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c410t-2bc6b8b1872a5666320655f2da005761db6ea29b8387fef0edc17b13178fb0223 |
IEDL.DBID | O3W |
ISSN | 1741-2560 1741-2552 |
IngestDate | Tue Aug 05 09:15:29 EDT 2025 Mon Jul 21 06:03:13 EDT 2025 Tue Jul 01 01:58:39 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Fri Jan 08 09:41:22 EST 2021 Wed Aug 21 03:33:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-2bc6b8b1872a5666320655f2da005761db6ea29b8387fef0edc17b13178fb0223 |
Notes | JNE-102650.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8937-031X 0000-0002-4659-564X 0000-0002-1185-2773 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1741-2552/ab08c8 |
PMID | 30786265 |
PQID | 2184530297 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1088_1741_2552_ab08c8 pubmed_primary_30786265 proquest_miscellaneous_2184530297 crossref_primary_10_1088_1741_2552_ab08c8 iop_journals_10_1088_1741_2552_ab08c8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Müller (jneab08c8bib040) 2013; 24 Sburlea (jneab08c8bib054) 2015; 12 Page (jneab08c8bib073) 2005; 86 Luft (jneab08c8bib069) 2004; 292 Wolpaw (jneab08c8bib056) 2009 Ferrante (jneab08c8bib025) 2011; 8 Cohen (jneab08c8bib059) 1995; vol 778 Xu (jneab08c8bib045) 2014; 61 Jeunet (jneab08c8bib087) 2016; vol 228 Kawamoto (jneab08c8bib010) 2013; 13 Pfurtscheller (jneab08c8bib049) 1999; 110 Hancock (jneab08c8bib020) 2012; 7 Cicerone (jneab08c8bib086) 1996; 10 Simeral (jneab08c8bib037) 2011; 8 Rodríguez-Ugarte (jneab08c8bib084) 2017 Jezernik (jneab08c8bib012) 2003; 6 Veneman (jneab08c8bib014) 2007; 15 Fujiwara (jneab08c8bib027) 2003; 82 Delisle-Rodriguez (jneab08c8bib055) 2017; 17 Buch (jneab08c8bib071) 2008; 39 Esquenazi (jneab08c8bib011) 2012; 91 Pfurtscheller (jneab08c8bib050) 2003; 114 Jain (jneab08c8bib031) 2013; 124 Yang (jneab08c8bib048) 2012; 83 Ramos-Murguialday (jneab08c8bib076) 2013; 74 Müller-Putz (jneab08c8bib079) 2016; vol 228 Hoyer (jneab08c8bib046) 2004; 5 Lee (jneab08c8bib052) 2009; 72 Rezk (jneab08c8bib019) 2017; 128 Rodriguez-Ugarte (jneab08c8bib034) 2018; 18 Blankertz (jneab08c8bib066) 2008; 25 Tabernig (jneab08c8bib077) 2018; 5 Sirigu (jneab08c8bib075) 1995; 6 McFarland (jneab08c8bib083) 1997; 103 Tucker (jneab08c8bib006) 2015; 12 Frolov (jneab08c8bib078) 2017; 11 Franceschini (jneab08c8bib002) 2018; 13 Hayashi (jneab08c8bib008) 2005 Villa-Parra (jneab08c8bib017) 2018; 34 Pfurtscheller (jneab08c8bib057) 2009 Pons (jneab08c8bib015) 2008 Lotte (jneab08c8bib064) 2007; 4 Jiang (jneab08c8bib053) 2015; 126 Thrasher (jneab08c8bib070) 2008; 22 Xu (jneab08c8bib081) 2014; 61 Rosecrance (jneab08c8bib023) 1991; 71 Muller-Putz (jneab08c8bib042) 2008; 55 Diez (jneab08c8bib041) 2013; 35 Leuthardt (jneab08c8bib036) 2004; 1 Kwak (jneab08c8bib044) 2015; 12 Hashimoto (jneab08c8bib051) 2013; 124 Contreras-Vidal (jneab08c8bib016) 2016; 13 Chen (jneab08c8bib021) 2014; 14 Johnson (jneab08c8bib074) 2002; 14 Mayr (jneab08c8bib013) 2007; 21 Wolpaw (jneab08c8bib035) 2012 Barachant (jneab08c8bib065) 2012; 59 Barachant (jneab08c8bib047) 2013; 112 Yamaguchi (jneab08c8bib028) 2012; 218 Maeshima (jneab08c8bib009) 2011; 11 Bayon (jneab08c8bib018) 2017; 91 Ge (jneab08c8bib058) 2014; 9 Velu (jneab08c8bib085) 2013; 7 Chen (jneab08c8bib022) 2005; 15 Alshbatat (jneab08c8bib039) 2014; 9 Kautz (jneab08c8bib024) 2005; 19 Rodríguez-Ugarte (jneab08c8bib033) 2017; 11 Jiménez (jneab08c8bib005) 2018 Ietswaart (jneab08c8bib072) 2011; 134 Schindler-Ivens (jneab08c8bib026) 2008; 188 Japkowicz (jneab08c8bib067) 2011 Ambrosini (jneab08c8bib001) 2012; 20 Bellman (jneab08c8bib029) 2017; 14 Villa-Parra (jneab08c8bib004) 2017; 17 Wolf (jneab08c8bib068) 2006; 296 Monaco (jneab08c8bib030) 2012; 20 Storzer (jneab08c8bib032) 2016; 10 Goldberger (jneab08c8bib063) 2005; 17 Leamy (jneab08c8bib061) 2014; 11 Berger (jneab08c8bib062) 2012 Wall (jneab08c8bib007) 2015; 9 Hortal (jneab08c8bib043) 2016; 26 Ang (jneab08c8bib060) 2012; 6 McFarland (jneab08c8bib038) 2008; 5 Biasiucci (jneab08c8bib080) 2018; 9 McFarland (jneab08c8bib082) 2015; 97 Tan (jneab08c8bib003) 2018; 12 |
References_xml | – volume: 25 start-page: 41 year: 2008 ident: jneab08c8bib066 article-title: Optimizing spatial filters for robust eeg single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 126 start-page: 154 year: 2015 ident: jneab08c8bib053 article-title: A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.003 – volume: 12 start-page: 276 year: 2018 ident: jneab08c8bib003 article-title: Lateral symmetry of synergies in lower limb muscles of acute post-stroke patients after robotic intervention publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2018.00276 – volume: 12 year: 2015 ident: jneab08c8bib054 article-title: Continuous detection of the self-initiated walking pre-movement state from eeg correlates without session-to-session recalibration publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/036007 – volume: 296 start-page: 2095 year: 2006 ident: jneab08c8bib068 article-title: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial publication-title: Jama doi: 10.1001/jama.296.17.2095 – volume: 72 start-page: 3182 year: 2009 ident: jneab08c8bib052 article-title: Kernel nonnegative matrix factorization for spectral eeg feature extraction publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.03.005 – volume: 10 start-page: 61 year: 2016 ident: jneab08c8bib032 article-title: Bicycling and walking are associated with different cortical oscillatory dynamics publication-title: Frontiers Hum. Neurosci. doi: 10.3389/fnhum.2016.00061 – volume: 15 start-page: 379 year: 2007 ident: jneab08c8bib014 article-title: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.903919 – volume: 91 start-page: 101 year: 2017 ident: jneab08c8bib018 article-title: Development and evaluation of a novel robotic platform for gait rehabilitation in patients with cerebral palsy: cpwalker publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.12.015 – start-page: 1 year: 2018 ident: jneab08c8bib005 article-title: Admittance controller with spatial modulation for assisted locomotion using a smart walker publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-018-0888-3 – volume: 35 start-page: 1155 year: 2013 ident: jneab08c8bib041 article-title: Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.12.005 – volume: 134 start-page: 1373 year: 2011 ident: jneab08c8bib072 article-title: Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy publication-title: Brain doi: 10.1093/brain/awr077 – volume: 20 start-page: 320 year: 2012 ident: jneab08c8bib001 article-title: Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2191574 – volume: 24 start-page: 97 year: 2013 ident: jneab08c8bib040 article-title: Proposal of a ssvep-bci to command a robotic wheelchair publication-title: J. Control Autom. Electr. Syst. doi: 10.1007/s40313-013-0002-9 – volume: 19 start-page: 250 year: 2005 ident: jneab08c8bib024 article-title: Coordination of hemiparetic locomotion after stroke rehabilitation publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968305279279 – volume: 1 start-page: 63 year: 2004 ident: jneab08c8bib036 article-title: A brain–computer interface using electrocorticographic signals in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/1/2/001 – volume: 5 start-page: 2055668318789280 year: 2018 ident: jneab08c8bib077 article-title: Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface publication-title: J. Rehabil. Assist. Technol. Eng. – year: 2012 ident: jneab08c8bib035 – volume: 9 year: 2014 ident: jneab08c8bib058 article-title: Classification of four-class motor imagery employing single-channel electroencephalography publication-title: PLoS One doi: 10.1371/journal.pone.0098019 – volume: 61 start-page: 2092 year: 2014 ident: jneab08c8bib081 article-title: A closed-loop brain–computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2313867 – volume: 103 start-page: 386 year: 1997 ident: jneab08c8bib083 article-title: Spatial filter selection for eeg-based communication publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00022-2 – volume: vol 228 start-page: 3 year: 2016 ident: jneab08c8bib087 article-title: Advances in user-training for mental-imagery-based bci control: psychological and cognitive factors and their neural correlates – volume: 9 start-page: 2159 year: 2014 ident: jneab08c8bib039 article-title: Eeg-based brain–computer interface for automating home appliances publication-title: J. Comput. doi: 10.4304/jcp.9.9.2159-2166 – volume: 14 start-page: 12410 year: 2014 ident: jneab08c8bib021 article-title: A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement publication-title: Sensors doi: 10.3390/s140712410 – volume: 11 start-page: 45 year: 2017 ident: jneab08c8bib033 article-title: Personalized offline and pseudo-online bci models to detect pedaling intent publication-title: Frontiers Neuroinformatics doi: 10.3389/fninf.2017.00045 – volume: 12 year: 2015 ident: jneab08c8bib044 article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/5/056009 – volume: 11 start-page: 400 year: 2017 ident: jneab08c8bib078 article-title: Post-stroke rehabilitation training with a motor-imagery-based brain–computer interface (bci)-controlled hand exoskeleton: a randomized controlled multicenter trial publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2017.00400 – volume: 21 start-page: 307 year: 2007 ident: jneab08c8bib013 article-title: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968307300697 – volume: 13 year: 2016 ident: jneab08c8bib016 article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/3/031001 – volume: 55 start-page: 361 year: 2008 ident: jneab08c8bib042 article-title: Control of an electrical prosthesis with an ssvep-based bci publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.897815 – start-page: 29 year: 2009 ident: jneab08c8bib056 article-title: Brain signals for brain–computer interfaces – volume: 83 start-page: 31 year: 2012 ident: jneab08c8bib048 article-title: Fast neighborhood component analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.021 – volume: 74 start-page: 100 year: 2013 ident: jneab08c8bib076 article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 9 start-page: 48 year: 2015 ident: jneab08c8bib007 article-title: Clinical application of the hybrid assistive limb (hal) for gait traininga systematic review publication-title: Frontiers Syst. Neurosci. doi: 10.3389/fnsys.2015.00048 – volume: 8 start-page: 47 year: 2011 ident: jneab08c8bib025 article-title: A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-8-47 – volume: 6 start-page: 997 year: 1995 ident: jneab08c8bib075 article-title: Congruent unilateral impairments for real and imagined hand movements publication-title: Neuroreport doi: 10.1097/00001756-199505090-00012 – volume: 17 start-page: 2725 year: 2017 ident: jneab08c8bib055 article-title: Adaptive spatial filter based on similarity indices to preserve the neural information on eeg signals during on-line processing publication-title: Sensors doi: 10.3390/s17122725 – volume: 6 start-page: 39 year: 2012 ident: jneab08c8bib060 article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2012.00039 – volume: 9 start-page: 2421 year: 2018 ident: jneab08c8bib080 article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke publication-title: Nat. Commun. doi: 10.1038/s41467-018-04673-z – volume: 82 start-page: 357 year: 2003 ident: jneab08c8bib027 article-title: Effect of pedaling exercise on the hemiplegic lower limb publication-title: A. J. Phys. Med. Rehabil. doi: 10.1097/01.PHM.0000064722.01940.E4 – volume: 110 start-page: 1842 year: 1999 ident: jneab08c8bib049 article-title: Event-related eeg/meg synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 112 start-page: 172 year: 2013 ident: jneab08c8bib047 article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 14 start-page: 1225 year: 2017 ident: jneab08c8bib029 article-title: Automatic control of cycling induced by functional electrical stimulation with electric motor assistance publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2527716 – volume: 13 start-page: e0193235 year: 2018 ident: jneab08c8bib002 article-title: Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients publication-title: PLoS One doi: 10.1371/journal.pone.0193235 – volume: 17 start-page: 2751 year: 2017 ident: jneab08c8bib004 article-title: Knee impedance modulation to control an active orthosis using insole sensors publication-title: Sensors doi: 10.3390/s17122751 – volume: 12 start-page: 1 year: 2015 ident: jneab08c8bib006 article-title: Control strategies for active lower extremity prosthetics and orthotics: a review publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-12-1 – volume: 124 start-page: 2153 year: 2013 ident: jneab08c8bib051 article-title: Eeg-based classification of imaginary left and right foot movements using beta rebound publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.05.006 – volume: 7 start-page: 84 year: 2013 ident: jneab08c8bib085 article-title: Single-trial classification of gait and point movement preparation from human eeg publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2013.00084 – volume: 11 start-page: 9 year: 2014 ident: jneab08c8bib061 article-title: An exploration of eeg features during recovery following stroke–implications for bci-mediated neurorehabilitation therapy publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-9 – volume: 17 start-page: 513 year: 2005 ident: jneab08c8bib063 article-title: Neighbourhood components analysis publication-title: Adv. Neural Inf. Process. Syst. – volume: 91 start-page: 911 year: 2012 ident: jneab08c8bib011 article-title: The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 188 start-page: 465 year: 2008 ident: jneab08c8bib026 article-title: Soleus h-reflex excitability during pedaling post-stroke publication-title: Exp. Brain Res. doi: 10.1007/s00221-008-1373-1 – volume: 22 start-page: 706 year: 2008 ident: jneab08c8bib070 article-title: Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy publication-title: Neurorehabil. Neural Repair doi: 10.1177/1545968308317436 – volume: 97 start-page: 271 year: 2015 ident: jneab08c8bib082 article-title: The advantages of the surface laplacian in brain–computer interface research publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.07.009 – volume: vol 228 start-page: 39 year: 2016 ident: jneab08c8bib079 article-title: From classic motor imagery to complex movement intention decoding: the noninvasive graz-bci approach – volume: 18 start-page: 1136 year: 2018 ident: jneab08c8bib034 article-title: Effects of tdcs on real-time bci detection of pedaling motor imagery publication-title: Sensors doi: 10.3390/s18041136 – volume: 218 start-page: 401 year: 2012 ident: jneab08c8bib028 article-title: Effects of pedaling exercise on the intracortical inhibition of cortical leg area publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3026-7 – volume: 292 start-page: 1853 year: 2004 ident: jneab08c8bib069 article-title: Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial publication-title: Jama doi: 10.1001/jama.292.15.1853 – year: 2011 ident: jneab08c8bib067 – volume: 20 start-page: 845 year: 2012 ident: jneab08c8bib030 article-title: Design and evaluation of neurobike: a neurorehabilitative platform for bedridden post-stroke patients publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2212914 – start-page: 47 year: 2009 ident: jneab08c8bib057 article-title: Dynamics of sensorimotor oscillations in a motor task – year: 2012 ident: jneab08c8bib062 – year: 2008 ident: jneab08c8bib015 – volume: 61 start-page: 288 year: 2014 ident: jneab08c8bib045 article-title: Enhanced low-latency detection of motor intention from eeg for closed-loop brain–computer interface applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2294203 – volume: vol 778 year: 1995 ident: jneab08c8bib059 – volume: 5 start-page: 101 year: 2008 ident: jneab08c8bib038 article-title: Emulation of computer mouse control with a noninvasive brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/5/2/001 – start-page: 1 year: 2017 ident: jneab08c8bib084 article-title: Preliminary study of pedaling motor imagery classification based on eeg signals – volume: 14 start-page: 841 year: 2002 ident: jneab08c8bib074 article-title: Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations publication-title: J. Cogn. Neurosci. doi: 10.1162/089892902760191072 – volume: 4 start-page: R1 year: 2007 ident: jneab08c8bib064 article-title: A review of classification algorithms for eeg-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/001 – volume: 11 start-page: 116 year: 2011 ident: jneab08c8bib009 article-title: Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report publication-title: BMC Neurol. doi: 10.1186/1471-2377-11-116 – volume: 26 start-page: 1650029 year: 2016 ident: jneab08c8bib043 article-title: Eeg-based detection of starting and stopping during gait cycle publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500295 – volume: 114 start-page: 1226 year: 2003 ident: jneab08c8bib050 article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00067-1 – start-page: 3063 year: 2005 ident: jneab08c8bib008 article-title: Control method of robot suit hal working as operator’s muscle using biological and dynamical information – volume: 8 year: 2011 ident: jneab08c8bib037 article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 d after implant of an intracortical microelectrode array publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025027 – volume: 13 start-page: 141 year: 2013 ident: jneab08c8bib010 article-title: Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients publication-title: BMC Neurol. doi: 10.1186/1471-2377-13-141 – volume: 39 start-page: 910 year: 2008 ident: jneab08c8bib071 article-title: Think to move: a neuromagnetic brain–computer interface (bci) system for chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.107.505313 – volume: 86 start-page: 399 year: 2005 ident: jneab08c8bib073 article-title: Effects of mental practice on affected limb use and function in chronic stroke publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2004.10.002 – volume: 7 start-page: 47 year: 2012 ident: jneab08c8bib020 article-title: Effects of lower limb reciprocal pedalling exercise on motor function after stroke: a systematic review of randomized and nonrandomized studies publication-title: Int. J. Stroke doi: 10.1111/j.1747-4949.2011.00728.x – volume: 128 start-page: e238 year: 2017 ident: jneab08c8bib019 article-title: S186 effect of reciprocal pedaling exercise on cortical reorganization and gait in stroke patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.07.196 – volume: 15 start-page: 587 year: 2005 ident: jneab08c8bib022 article-title: Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2005.06.001 – volume: 71 start-page: 334 year: 1991 ident: jneab08c8bib023 article-title: Kinematic analysis of lower-limb movement during ergometer pedaling in hemiplegic and nonhemiplegic subjects publication-title: Phys. Ther. doi: 10.1093/ptj/71.4.334 – volume: 5 start-page: 1457 year: 2004 ident: jneab08c8bib046 article-title: Non-negative matrix factorization with sparseness constraints publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 108 year: 2003 ident: jneab08c8bib012 article-title: Robotic orthosis lokomat: a rehabilitation and research tool publication-title: Neuromodulation: Technol. Neural Interface doi: 10.1046/j.1525-1403.2003.03017.x – volume: 34 start-page: 198 year: 2018 ident: jneab08c8bib017 article-title: Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG publication-title: Res. Biomed. Eng. doi: 10.1590/2446-4740.07417 – volume: 59 start-page: 920 year: 2012 ident: jneab08c8bib065 article-title: Multiclass brain–computer interface classification by riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 124 start-page: 379 year: 2013 ident: jneab08c8bib031 article-title: Eeg during pedaling: evidence for cortical control of locomotor tasks publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.08.021 – volume: 10 start-page: 79 year: 1996 ident: jneab08c8bib086 article-title: Attention deficits and dual task demands after mild traumatic brain injury publication-title: Brain Injury doi: 10.1080/026990596124566 |
SSID | ssj0031790 |
Score | 2.4242792 |
Snippet | Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to... Objective . The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods... The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56005 |
SubjectTerms | brain-computer interface motor imagery neighborhood component analysis pedaling motor imagery Riemannian geometry sparseness constraints time-frequency analysis |
Title | System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ab08c8 https://www.ncbi.nlm.nih.gov/pubmed/30786265 https://www.proquest.com/docview/2184530297 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51y4ULAspjeVSDBEgcwsZx4jhwKhVViwTlQEVvlh07UtFusmp2hcqvZybOrqgEFTdLGTsjj-35xp4HwEsVCAc0qU1cXrokz3Nq1YFdoBj8KqmqIYHp5y_q-Cz_dF6c78D7bSxMtxyP_rfUjImC4xSODnF6RhhaJISEs5l1qa71BG5JrTRbXqfy--YYlpx6KkZDMrVKxzfKv41wTSdN6L__hpuD2jm6C3dGvIgHkbt7sBPa-7B30JKtvLjC1zh4cA5X43vwM6YfR9ZMHrsW-7Xja5aEwynZJYi-tL7HVYej39CvgMvgLYekI8msu8SLBSe1uHpHROxP26PFD4cnSNAW51xQLZlfLBx1_zO_9wM4O_r47fA4GQsrJHUu0lWSuVo57YQuM0twTsmMgEjRZN5ybKoS3qlgs8ppqcsmNGnwtSidoCnVjSOlLx_Cbtu14TGgKGXpMuVsHsrcke3mK66uXnnpbSa8msJsM7WmHrni4hdzM7x-a21YGIaFYaIwpvBm22MZM27cQPuKpGXGbdffQIfX6H60wQhlCpMy4CvM0jdTeLERuaEdxs8mtg3dujdsBHNtpaqcwqO4FraM0QnJJmHx5D8ZeQq3CXFV0RvwGeyuLtfhOaGalduHycnp1_1hDf8Gimvurg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6kBAXBC2PhUIHCZA4hI3jxHG4lZZVy6NwoKI3y44dqWg3WTW7QuXXdyb2VlSCqjdLGTsjj-35xp4HY6-kRxzQpCaxeWmTPM-xVXtygSLwK4WshgSmX4_l4Un-6bQ4jXVOh1iYbh6P_nfYDImCwxRGhzg1RgzNE0TC2djYVNVqPHfNOtsshJRUu-Gb-Lk6igWlnwoRkdRDpvGd8l-jXNNL6_jv_0POQfVM7rN7ETPCXuDwAVvz7Rbb3mvRXp5dwBsYvDiH6_Ft9jukIAfSTg66FvqlpauWhEIqyS0Iv7Suh0UH0Xfoj4e5d4bC0gHl1p3D2YwSW1y8RyLyqe3BwIf9I0B4C1MqqpZMz2YWu_-d4_shO5l8_LF_mMTiCkmd83SRZLaWVlmuyswgpJMiQzBSNJkzFJ8qubPSm6yySqiy8U3qXc1Ly3FKVWNR8YtHbKPtWv-EAS9FaTNpTe7L3KL95iqqsF454UzGnRyx8WpqdR25ogIYUz28gCulSRiahKGDMEbs7VWPeci6cQPta5SWjluvv4EOrtH9ar3mUhc6JdBXaFxFI_ZyJXKNu4yeTkzru2WvyRCm-kpVOWKPw1q4YgxPSTILi6e3ZGSX3fl-MNFfjo4_P2N3EYBVwTlwh20szpf-OYKchX0xLORLrgTxlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+based+on+subject-specific+bands+to+recognize+pedaling+motor+imagery%3A+towards+a+BCI+for+lower-limb+rehabilitation&rft.jtitle=Journal+of+neural+engineering&rft.au=Delisle-Rodriguez%2C+Denis&rft.au=Cardoso%2C+Vivianne&rft.au=Gurve%2C+Dharmendra&rft.au=Loterio%2C+Flavia&rft.date=2019-10-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=16&rft.issue=5&rft.spage=56005&rft_id=info:doi/10.1088%2F1741-2552%2Fab08c8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ab08c8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |