System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation

Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on s...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 16; no. 5; pp. 56005 - 56020
Main Authors Delisle-Rodriguez, Denis, Cardoso, Vivianne, Gurve, Dharmendra, Loterio, Flavia, Alejandra Romero-Laiseca, Maria, Krishnan, Sridhar, Bastos-Filho, Teodiano
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2019
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ab08c8

Cover

Loading…
Abstract Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
AbstractList Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns.OBJECTIVEThe aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns.After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability.APPROACHAfter applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability.For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text].MAIN RESULTSFor ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text].Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.SIGNIFICANCEOur approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
Objective . The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. Approach . After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. Main results . For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of and mean Kappa of . Significance . Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns. After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability. For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text]. Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.
Author Cardoso, Vivianne
Delisle-Rodriguez, Denis
Alejandra Romero-Laiseca, Maria
Bastos-Filho, Teodiano
Gurve, Dharmendra
Krishnan, Sridhar
Loterio, Flavia
Author_xml – sequence: 1
  givenname: Denis
  orcidid: 0000-0002-8937-031X
  surname: Delisle-Rodriguez
  fullname: Delisle-Rodriguez, Denis
  email: delisle05@gmail.com
  organization: University of Oriente Center of Medical Biophysics, 90500-Santiago de Cuba, Cuba
– sequence: 2
  givenname: Vivianne
  surname: Cardoso
  fullname: Cardoso, Vivianne
  organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil
– sequence: 3
  givenname: Dharmendra
  surname: Gurve
  fullname: Gurve, Dharmendra
  organization: Ryerson University Department of Electrical, Computer, and Biomedical Engineering, Toronto, ON M5B 2K3, Canada
– sequence: 4
  givenname: Flavia
  surname: Loterio
  fullname: Loterio, Flavia
  organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil
– sequence: 5
  givenname: Maria
  surname: Alejandra Romero-Laiseca
  fullname: Alejandra Romero-Laiseca, Maria
  organization: Federal University of Espirito Santo Postgraduate Program in Electrical Engineering, 29075-910 Vitoria, Brazil
– sequence: 6
  givenname: Sridhar
  orcidid: 0000-0002-4659-564X
  surname: Krishnan
  fullname: Krishnan, Sridhar
  organization: Ryerson University Department of Electrical, Computer, and Biomedical Engineering, Toronto, ON M5B 2K3, Canada
– sequence: 7
  givenname: Teodiano
  orcidid: 0000-0002-1185-2773
  surname: Bastos-Filho
  fullname: Bastos-Filho, Teodiano
  organization: Federal University of Espirito Santo Postgraduate Program in Biotechnology, 29047-105 Vitoria, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30786265$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URD_gzgn5Rg8NHTtrx8sNVhQqVeqhcLZsZ7J4ldjBTrTa_vV4tdseEHDyyPN7I733zslJiAEJecvgAwOlrlmzYBUXgl8bC8qpF-Ts-evkeZZwSs5z3gDUrFnCK3JaQ6Mkl-KMbB92ecKBWpOxpTHQPNsNuqnKIzrfeVc2oc10ijShi-vgH5GO2JrehzUd4hQT9YNZY9p9LNDWpAIb-nl1S7uy6uMWU9X7wRb5T2N97ycz-Rhek5ed6TO-Ob4X5MfNl--rb9Xd_dfb1ae7yi0YTBW3TlplmWq4EVLKmoMUouOtARCNZK2VaPjSqlo1HXaArWONZcWn6ixwXl-Qy8PdMcVfM-ZJDz477HsTMM5Zc6YWoga-bAr67ojOdsBWj6kYSzv9FFYB5AFwKeacsNPu6GZKxveagd63ovex630F-tBKEcIfwqfb_5G8P0h8HPUmzimUlPQmoGZSCw2lVBB6bLtCXv2F_Ofh33Q7qm0
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1109_TNSRE_2021_3132944
crossref_primary_10_1089_brain_2024_0005
crossref_primary_10_1007_s42600_021_00196_7
crossref_primary_10_3390_jpm13010046
crossref_primary_10_1088_1741_2552_ad48b9
crossref_primary_10_1109_JBHI_2024_3395910
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_3390_signals3020024
crossref_primary_10_1038_s41598_020_63303_1
crossref_primary_10_3389_fninf_2024_1345425
crossref_primary_10_1123_mc_2020_0041
crossref_primary_10_3390_app12052736
crossref_primary_10_1088_1741_2552_acb73b
crossref_primary_10_3390_electronics12224697
crossref_primary_10_3390_electronics9010174
crossref_primary_10_1007_s42600_024_00372_5
crossref_primary_10_15622_ia_2021_20_1_4
crossref_primary_10_1109_TNSRE_2020_2974056
crossref_primary_10_1080_10255842_2023_2207705
crossref_primary_10_1109_JSEN_2020_3005968
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1088_2057_1976_ad2e35
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_7736_JKSPE_024_040
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_1007_s42600_023_00329_0
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_3390_s22052028
crossref_primary_10_1155_2020_8846021
Cites_doi 10.1109/MSP.2008.4408441
10.1016/j.clinph.2014.05.003
10.3389/fnins.2018.00276
10.1088/1741-2560/12/3/036007
10.1001/jama.296.17.2095
10.1016/j.neucom.2009.03.005
10.3389/fnhum.2016.00061
10.1109/TNSRE.2007.903919
10.1016/j.robot.2016.12.015
10.1007/s10846-018-0888-3
10.1016/j.medengphy.2012.12.005
10.1093/brain/awr077
10.1109/TNSRE.2012.2191574
10.1007/s40313-013-0002-9
10.1177/1545968305279279
10.1088/1741-2560/1/2/001
10.1371/journal.pone.0098019
10.1109/TBME.2014.2313867
10.1016/S0013-4694(97)00022-2
10.4304/jcp.9.9.2159-2166
10.3390/s140712410
10.3389/fninf.2017.00045
10.1088/1741-2560/12/5/056009
10.3389/fnins.2017.00400
10.1177/1545968307300697
10.1088/1741-2560/13/3/031001
10.1109/TBME.2007.897815
10.1016/j.neucom.2011.10.021
10.1002/ana.23879
10.3389/fnsys.2015.00048
10.1186/1743-0003-8-47
10.1097/00001756-199505090-00012
10.3390/s17122725
10.3389/fnins.2012.00039
10.1038/s41467-018-04673-z
10.1097/01.PHM.0000064722.01940.E4
10.1016/S1388-2457(99)00141-8
10.1016/j.neucom.2012.12.039
10.1109/TASE.2016.2527716
10.1371/journal.pone.0193235
10.3390/s17122751
10.1186/1743-0003-12-1
10.1016/j.clinph.2013.05.006
10.3389/fnins.2013.00084
10.1186/1743-0003-11-9
10.1097/PHM.0b013e318269d9a3
10.1007/s00221-008-1373-1
10.1177/1545968308317436
10.1016/j.ijpsycho.2014.07.009
10.3390/s18041136
10.1007/s00221-012-3026-7
10.1001/jama.292.15.1853
10.1109/TNSRE.2012.2212914
10.1109/TBME.2013.2294203
10.1088/1741-2560/5/2/001
10.1162/089892902760191072
10.1088/1741-2560/4/2/001
10.1186/1471-2377-11-116
10.1142/S0129065716500295
10.1016/S1388-2457(03)00067-1
10.1088/1741-2560/8/2/025027
10.1186/1471-2377-13-141
10.1161/STROKEAHA.107.505313
10.1016/j.apmr.2004.10.002
10.1111/j.1747-4949.2011.00728.x
10.1016/j.clinph.2017.07.196
10.1016/j.jelekin.2005.06.001
10.1093/ptj/71.4.334
10.1046/j.1525-1403.2003.03017.x
10.1590/2446-4740.07417
10.1109/TBME.2011.2172210
10.1016/j.clinph.2012.08.021
10.1080/026990596124566
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
DOI 10.1088/1741-2552/ab08c8
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation
EISSN 1741-2552
ExternalDocumentID 30786265
10_1088_1741_2552_ab08c8
jneab08c8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
NPM
7X8
AEINN
ID FETCH-LOGICAL-c410t-2bc6b8b1872a5666320655f2da005761db6ea29b8387fef0edc17b13178fb0223
IEDL.DBID O3W
ISSN 1741-2560
1741-2552
IngestDate Tue Aug 05 09:15:29 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
Tue Jul 01 01:58:39 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Fri Jan 08 09:41:22 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-2bc6b8b1872a5666320655f2da005761db6ea29b8387fef0edc17b13178fb0223
Notes JNE-102650.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8937-031X
0000-0002-4659-564X
0000-0002-1185-2773
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/ab08c8
PMID 30786265
PQID 2184530297
PQPubID 23479
PageCount 16
ParticipantIDs crossref_citationtrail_10_1088_1741_2552_ab08c8
pubmed_primary_30786265
proquest_miscellaneous_2184530297
crossref_primary_10_1088_1741_2552_ab08c8
iop_journals_10_1088_1741_2552_ab08c8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Müller (jneab08c8bib040) 2013; 24
Sburlea (jneab08c8bib054) 2015; 12
Page (jneab08c8bib073) 2005; 86
Luft (jneab08c8bib069) 2004; 292
Wolpaw (jneab08c8bib056) 2009
Ferrante (jneab08c8bib025) 2011; 8
Cohen (jneab08c8bib059) 1995; vol 778
Xu (jneab08c8bib045) 2014; 61
Jeunet (jneab08c8bib087) 2016; vol 228
Kawamoto (jneab08c8bib010) 2013; 13
Pfurtscheller (jneab08c8bib049) 1999; 110
Hancock (jneab08c8bib020) 2012; 7
Cicerone (jneab08c8bib086) 1996; 10
Simeral (jneab08c8bib037) 2011; 8
Rodríguez-Ugarte (jneab08c8bib084) 2017
Jezernik (jneab08c8bib012) 2003; 6
Veneman (jneab08c8bib014) 2007; 15
Fujiwara (jneab08c8bib027) 2003; 82
Delisle-Rodriguez (jneab08c8bib055) 2017; 17
Buch (jneab08c8bib071) 2008; 39
Esquenazi (jneab08c8bib011) 2012; 91
Pfurtscheller (jneab08c8bib050) 2003; 114
Jain (jneab08c8bib031) 2013; 124
Yang (jneab08c8bib048) 2012; 83
Ramos-Murguialday (jneab08c8bib076) 2013; 74
Müller-Putz (jneab08c8bib079) 2016; vol 228
Hoyer (jneab08c8bib046) 2004; 5
Lee (jneab08c8bib052) 2009; 72
Rezk (jneab08c8bib019) 2017; 128
Rodriguez-Ugarte (jneab08c8bib034) 2018; 18
Blankertz (jneab08c8bib066) 2008; 25
Tabernig (jneab08c8bib077) 2018; 5
Sirigu (jneab08c8bib075) 1995; 6
McFarland (jneab08c8bib083) 1997; 103
Tucker (jneab08c8bib006) 2015; 12
Frolov (jneab08c8bib078) 2017; 11
Franceschini (jneab08c8bib002) 2018; 13
Hayashi (jneab08c8bib008) 2005
Villa-Parra (jneab08c8bib017) 2018; 34
Pfurtscheller (jneab08c8bib057) 2009
Pons (jneab08c8bib015) 2008
Lotte (jneab08c8bib064) 2007; 4
Jiang (jneab08c8bib053) 2015; 126
Thrasher (jneab08c8bib070) 2008; 22
Xu (jneab08c8bib081) 2014; 61
Rosecrance (jneab08c8bib023) 1991; 71
Muller-Putz (jneab08c8bib042) 2008; 55
Diez (jneab08c8bib041) 2013; 35
Leuthardt (jneab08c8bib036) 2004; 1
Kwak (jneab08c8bib044) 2015; 12
Hashimoto (jneab08c8bib051) 2013; 124
Contreras-Vidal (jneab08c8bib016) 2016; 13
Chen (jneab08c8bib021) 2014; 14
Johnson (jneab08c8bib074) 2002; 14
Mayr (jneab08c8bib013) 2007; 21
Wolpaw (jneab08c8bib035) 2012
Barachant (jneab08c8bib065) 2012; 59
Barachant (jneab08c8bib047) 2013; 112
Yamaguchi (jneab08c8bib028) 2012; 218
Maeshima (jneab08c8bib009) 2011; 11
Bayon (jneab08c8bib018) 2017; 91
Ge (jneab08c8bib058) 2014; 9
Velu (jneab08c8bib085) 2013; 7
Chen (jneab08c8bib022) 2005; 15
Alshbatat (jneab08c8bib039) 2014; 9
Kautz (jneab08c8bib024) 2005; 19
Rodríguez-Ugarte (jneab08c8bib033) 2017; 11
Jiménez (jneab08c8bib005) 2018
Ietswaart (jneab08c8bib072) 2011; 134
Schindler-Ivens (jneab08c8bib026) 2008; 188
Japkowicz (jneab08c8bib067) 2011
Ambrosini (jneab08c8bib001) 2012; 20
Bellman (jneab08c8bib029) 2017; 14
Villa-Parra (jneab08c8bib004) 2017; 17
Wolf (jneab08c8bib068) 2006; 296
Monaco (jneab08c8bib030) 2012; 20
Storzer (jneab08c8bib032) 2016; 10
Goldberger (jneab08c8bib063) 2005; 17
Leamy (jneab08c8bib061) 2014; 11
Berger (jneab08c8bib062) 2012
Wall (jneab08c8bib007) 2015; 9
Hortal (jneab08c8bib043) 2016; 26
Ang (jneab08c8bib060) 2012; 6
McFarland (jneab08c8bib038) 2008; 5
Biasiucci (jneab08c8bib080) 2018; 9
McFarland (jneab08c8bib082) 2015; 97
Tan (jneab08c8bib003) 2018; 12
References_xml – volume: 25
  start-page: 41
  year: 2008
  ident: jneab08c8bib066
  article-title: Optimizing spatial filters for robust eeg single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 126
  start-page: 154
  year: 2015
  ident: jneab08c8bib053
  article-title: A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.003
– volume: 12
  start-page: 276
  year: 2018
  ident: jneab08c8bib003
  article-title: Lateral symmetry of synergies in lower limb muscles of acute post-stroke patients after robotic intervention
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2018.00276
– volume: 12
  year: 2015
  ident: jneab08c8bib054
  article-title: Continuous detection of the self-initiated walking pre-movement state from eeg correlates without session-to-session recalibration
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/036007
– volume: 296
  start-page: 2095
  year: 2006
  ident: jneab08c8bib068
  article-title: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial
  publication-title: Jama
  doi: 10.1001/jama.296.17.2095
– volume: 72
  start-page: 3182
  year: 2009
  ident: jneab08c8bib052
  article-title: Kernel nonnegative matrix factorization for spectral eeg feature extraction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.03.005
– volume: 10
  start-page: 61
  year: 2016
  ident: jneab08c8bib032
  article-title: Bicycling and walking are associated with different cortical oscillatory dynamics
  publication-title: Frontiers Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00061
– volume: 15
  start-page: 379
  year: 2007
  ident: jneab08c8bib014
  article-title: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.903919
– volume: 91
  start-page: 101
  year: 2017
  ident: jneab08c8bib018
  article-title: Development and evaluation of a novel robotic platform for gait rehabilitation in patients with cerebral palsy: cpwalker
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.12.015
– start-page: 1
  year: 2018
  ident: jneab08c8bib005
  article-title: Admittance controller with spatial modulation for assisted locomotion using a smart walker
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-018-0888-3
– volume: 35
  start-page: 1155
  year: 2013
  ident: jneab08c8bib041
  article-title: Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.12.005
– volume: 134
  start-page: 1373
  year: 2011
  ident: jneab08c8bib072
  article-title: Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy
  publication-title: Brain
  doi: 10.1093/brain/awr077
– volume: 20
  start-page: 320
  year: 2012
  ident: jneab08c8bib001
  article-title: Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2191574
– volume: 24
  start-page: 97
  year: 2013
  ident: jneab08c8bib040
  article-title: Proposal of a ssvep-bci to command a robotic wheelchair
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-013-0002-9
– volume: 19
  start-page: 250
  year: 2005
  ident: jneab08c8bib024
  article-title: Coordination of hemiparetic locomotion after stroke rehabilitation
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968305279279
– volume: 1
  start-page: 63
  year: 2004
  ident: jneab08c8bib036
  article-title: A brain–computer interface using electrocorticographic signals in humans
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/2/001
– volume: 5
  start-page: 2055668318789280
  year: 2018
  ident: jneab08c8bib077
  article-title: Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface
  publication-title: J. Rehabil. Assist. Technol. Eng.
– year: 2012
  ident: jneab08c8bib035
– volume: 9
  year: 2014
  ident: jneab08c8bib058
  article-title: Classification of four-class motor imagery employing single-channel electroencephalography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098019
– volume: 61
  start-page: 2092
  year: 2014
  ident: jneab08c8bib081
  article-title: A closed-loop brain–computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2313867
– volume: 103
  start-page: 386
  year: 1997
  ident: jneab08c8bib083
  article-title: Spatial filter selection for eeg-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– volume: vol 228
  start-page: 3
  year: 2016
  ident: jneab08c8bib087
  article-title: Advances in user-training for mental-imagery-based bci control: psychological and cognitive factors and their neural correlates
– volume: 9
  start-page: 2159
  year: 2014
  ident: jneab08c8bib039
  article-title: Eeg-based brain–computer interface for automating home appliances
  publication-title: J. Comput.
  doi: 10.4304/jcp.9.9.2159-2166
– volume: 14
  start-page: 12410
  year: 2014
  ident: jneab08c8bib021
  article-title: A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement
  publication-title: Sensors
  doi: 10.3390/s140712410
– volume: 11
  start-page: 45
  year: 2017
  ident: jneab08c8bib033
  article-title: Personalized offline and pseudo-online bci models to detect pedaling intent
  publication-title: Frontiers Neuroinformatics
  doi: 10.3389/fninf.2017.00045
– volume: 12
  year: 2015
  ident: jneab08c8bib044
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/056009
– volume: 11
  start-page: 400
  year: 2017
  ident: jneab08c8bib078
  article-title: Post-stroke rehabilitation training with a motor-imagery-based brain–computer interface (bci)-controlled hand exoskeleton: a randomized controlled multicenter trial
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2017.00400
– volume: 21
  start-page: 307
  year: 2007
  ident: jneab08c8bib013
  article-title: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968307300697
– volume: 13
  year: 2016
  ident: jneab08c8bib016
  article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/031001
– volume: 55
  start-page: 361
  year: 2008
  ident: jneab08c8bib042
  article-title: Control of an electrical prosthesis with an ssvep-based bci
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897815
– start-page: 29
  year: 2009
  ident: jneab08c8bib056
  article-title: Brain signals for brain–computer interfaces
– volume: 83
  start-page: 31
  year: 2012
  ident: jneab08c8bib048
  article-title: Fast neighborhood component analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.021
– volume: 74
  start-page: 100
  year: 2013
  ident: jneab08c8bib076
  article-title: Brain-machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 9
  start-page: 48
  year: 2015
  ident: jneab08c8bib007
  article-title: Clinical application of the hybrid assistive limb (hal) for gait traininga systematic review
  publication-title: Frontiers Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00048
– volume: 8
  start-page: 47
  year: 2011
  ident: jneab08c8bib025
  article-title: A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-47
– volume: 6
  start-page: 997
  year: 1995
  ident: jneab08c8bib075
  article-title: Congruent unilateral impairments for real and imagined hand movements
  publication-title: Neuroreport
  doi: 10.1097/00001756-199505090-00012
– volume: 17
  start-page: 2725
  year: 2017
  ident: jneab08c8bib055
  article-title: Adaptive spatial filter based on similarity indices to preserve the neural information on eeg signals during on-line processing
  publication-title: Sensors
  doi: 10.3390/s17122725
– volume: 6
  start-page: 39
  year: 2012
  ident: jneab08c8bib060
  article-title: Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 9
  start-page: 2421
  year: 2018
  ident: jneab08c8bib080
  article-title: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04673-z
– volume: 82
  start-page: 357
  year: 2003
  ident: jneab08c8bib027
  article-title: Effect of pedaling exercise on the hemiplegic lower limb
  publication-title: A. J. Phys. Med. Rehabil.
  doi: 10.1097/01.PHM.0000064722.01940.E4
– volume: 110
  start-page: 1842
  year: 1999
  ident: jneab08c8bib049
  article-title: Event-related eeg/meg synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 112
  start-page: 172
  year: 2013
  ident: jneab08c8bib047
  article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 14
  start-page: 1225
  year: 2017
  ident: jneab08c8bib029
  article-title: Automatic control of cycling induced by functional electrical stimulation with electric motor assistance
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2527716
– volume: 13
  start-page: e0193235
  year: 2018
  ident: jneab08c8bib002
  article-title: Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193235
– volume: 17
  start-page: 2751
  year: 2017
  ident: jneab08c8bib004
  article-title: Knee impedance modulation to control an active orthosis using insole sensors
  publication-title: Sensors
  doi: 10.3390/s17122751
– volume: 12
  start-page: 1
  year: 2015
  ident: jneab08c8bib006
  article-title: Control strategies for active lower extremity prosthetics and orthotics: a review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-12-1
– volume: 124
  start-page: 2153
  year: 2013
  ident: jneab08c8bib051
  article-title: Eeg-based classification of imaginary left and right foot movements using beta rebound
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.05.006
– volume: 7
  start-page: 84
  year: 2013
  ident: jneab08c8bib085
  article-title: Single-trial classification of gait and point movement preparation from human eeg
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2013.00084
– volume: 11
  start-page: 9
  year: 2014
  ident: jneab08c8bib061
  article-title: An exploration of eeg features during recovery following stroke–implications for bci-mediated neurorehabilitation therapy
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-9
– volume: 17
  start-page: 513
  year: 2005
  ident: jneab08c8bib063
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 91
  start-page: 911
  year: 2012
  ident: jneab08c8bib011
  article-title: The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 188
  start-page: 465
  year: 2008
  ident: jneab08c8bib026
  article-title: Soleus h-reflex excitability during pedaling post-stroke
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-008-1373-1
– volume: 22
  start-page: 706
  year: 2008
  ident: jneab08c8bib070
  article-title: Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968308317436
– volume: 97
  start-page: 271
  year: 2015
  ident: jneab08c8bib082
  article-title: The advantages of the surface laplacian in brain–computer interface research
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.07.009
– volume: vol 228
  start-page: 39
  year: 2016
  ident: jneab08c8bib079
  article-title: From classic motor imagery to complex movement intention decoding: the noninvasive graz-bci approach
– volume: 18
  start-page: 1136
  year: 2018
  ident: jneab08c8bib034
  article-title: Effects of tdcs on real-time bci detection of pedaling motor imagery
  publication-title: Sensors
  doi: 10.3390/s18041136
– volume: 218
  start-page: 401
  year: 2012
  ident: jneab08c8bib028
  article-title: Effects of pedaling exercise on the intracortical inhibition of cortical leg area
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3026-7
– volume: 292
  start-page: 1853
  year: 2004
  ident: jneab08c8bib069
  article-title: Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial
  publication-title: Jama
  doi: 10.1001/jama.292.15.1853
– year: 2011
  ident: jneab08c8bib067
– volume: 20
  start-page: 845
  year: 2012
  ident: jneab08c8bib030
  article-title: Design and evaluation of neurobike: a neurorehabilitative platform for bedridden post-stroke patients
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2212914
– start-page: 47
  year: 2009
  ident: jneab08c8bib057
  article-title: Dynamics of sensorimotor oscillations in a motor task
– year: 2012
  ident: jneab08c8bib062
– year: 2008
  ident: jneab08c8bib015
– volume: 61
  start-page: 288
  year: 2014
  ident: jneab08c8bib045
  article-title: Enhanced low-latency detection of motor intention from eeg for closed-loop brain–computer interface applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2294203
– volume: vol 778
  year: 1995
  ident: jneab08c8bib059
– volume: 5
  start-page: 101
  year: 2008
  ident: jneab08c8bib038
  article-title: Emulation of computer mouse control with a noninvasive brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/2/001
– start-page: 1
  year: 2017
  ident: jneab08c8bib084
  article-title: Preliminary study of pedaling motor imagery classification based on eeg signals
– volume: 14
  start-page: 841
  year: 2002
  ident: jneab08c8bib074
  article-title: Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892902760191072
– volume: 4
  start-page: R1
  year: 2007
  ident: jneab08c8bib064
  article-title: A review of classification algorithms for eeg-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/001
– volume: 11
  start-page: 116
  year: 2011
  ident: jneab08c8bib009
  article-title: Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-11-116
– volume: 26
  start-page: 1650029
  year: 2016
  ident: jneab08c8bib043
  article-title: Eeg-based detection of starting and stopping during gait cycle
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500295
– volume: 114
  start-page: 1226
  year: 2003
  ident: jneab08c8bib050
  article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00067-1
– start-page: 3063
  year: 2005
  ident: jneab08c8bib008
  article-title: Control method of robot suit hal working as operator’s muscle using biological and dynamical information
– volume: 8
  year: 2011
  ident: jneab08c8bib037
  article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 d after implant of an intracortical microelectrode array
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025027
– volume: 13
  start-page: 141
  year: 2013
  ident: jneab08c8bib010
  article-title: Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-13-141
– volume: 39
  start-page: 910
  year: 2008
  ident: jneab08c8bib071
  article-title: Think to move: a neuromagnetic brain–computer interface (bci) system for chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.505313
– volume: 86
  start-page: 399
  year: 2005
  ident: jneab08c8bib073
  article-title: Effects of mental practice on affected limb use and function in chronic stroke
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2004.10.002
– volume: 7
  start-page: 47
  year: 2012
  ident: jneab08c8bib020
  article-title: Effects of lower limb reciprocal pedalling exercise on motor function after stroke: a systematic review of randomized and nonrandomized studies
  publication-title: Int. J. Stroke
  doi: 10.1111/j.1747-4949.2011.00728.x
– volume: 128
  start-page: e238
  year: 2017
  ident: jneab08c8bib019
  article-title: S186 effect of reciprocal pedaling exercise on cortical reorganization and gait in stroke patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.07.196
– volume: 15
  start-page: 587
  year: 2005
  ident: jneab08c8bib022
  article-title: Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2005.06.001
– volume: 71
  start-page: 334
  year: 1991
  ident: jneab08c8bib023
  article-title: Kinematic analysis of lower-limb movement during ergometer pedaling in hemiplegic and nonhemiplegic subjects
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/71.4.334
– volume: 5
  start-page: 1457
  year: 2004
  ident: jneab08c8bib046
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 108
  year: 2003
  ident: jneab08c8bib012
  article-title: Robotic orthosis lokomat: a rehabilitation and research tool
  publication-title: Neuromodulation: Technol. Neural Interface
  doi: 10.1046/j.1525-1403.2003.03017.x
– volume: 34
  start-page: 198
  year: 2018
  ident: jneab08c8bib017
  article-title: Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG
  publication-title: Res. Biomed. Eng.
  doi: 10.1590/2446-4740.07417
– volume: 59
  start-page: 920
  year: 2012
  ident: jneab08c8bib065
  article-title: Multiclass brain–computer interface classification by riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 124
  start-page: 379
  year: 2013
  ident: jneab08c8bib031
  article-title: Eeg during pedaling: evidence for cortical control of locomotor tasks
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.08.021
– volume: 10
  start-page: 79
  year: 1996
  ident: jneab08c8bib086
  article-title: Attention deficits and dual task demands after mild traumatic brain injury
  publication-title: Brain Injury
  doi: 10.1080/026990596124566
SSID ssj0031790
Score 2.4242792
Snippet Objective. The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to...
Objective . The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods...
The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56005
SubjectTerms brain-computer interface
motor imagery
neighborhood component analysis
pedaling motor imagery
Riemannian geometry
sparseness constraints
time-frequency analysis
Title System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation
URI https://iopscience.iop.org/article/10.1088/1741-2552/ab08c8
https://www.ncbi.nlm.nih.gov/pubmed/30786265
https://www.proquest.com/docview/2184530297
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51y4ULAspjeVSDBEgcwsZx4jhwKhVViwTlQEVvlh07UtFusmp2hcqvZybOrqgEFTdLGTsjj-35xp4HwEsVCAc0qU1cXrokz3Nq1YFdoBj8KqmqIYHp5y_q-Cz_dF6c78D7bSxMtxyP_rfUjImC4xSODnF6RhhaJISEs5l1qa71BG5JrTRbXqfy--YYlpx6KkZDMrVKxzfKv41wTSdN6L__hpuD2jm6C3dGvIgHkbt7sBPa-7B30JKtvLjC1zh4cA5X43vwM6YfR9ZMHrsW-7Xja5aEwynZJYi-tL7HVYej39CvgMvgLYekI8msu8SLBSe1uHpHROxP26PFD4cnSNAW51xQLZlfLBx1_zO_9wM4O_r47fA4GQsrJHUu0lWSuVo57YQuM0twTsmMgEjRZN5ybKoS3qlgs8ppqcsmNGnwtSidoCnVjSOlLx_Cbtu14TGgKGXpMuVsHsrcke3mK66uXnnpbSa8msJsM7WmHrni4hdzM7x-a21YGIaFYaIwpvBm22MZM27cQPuKpGXGbdffQIfX6H60wQhlCpMy4CvM0jdTeLERuaEdxs8mtg3dujdsBHNtpaqcwqO4FraM0QnJJmHx5D8ZeQq3CXFV0RvwGeyuLtfhOaGalduHycnp1_1hDf8Gimvurg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6kBAXBC2PhUIHCZA4hI3jxHG4lZZVy6NwoKI3y44dqWg3WTW7QuXXdyb2VlSCqjdLGTsjj-35xp4HY6-kRxzQpCaxeWmTPM-xVXtygSLwK4WshgSmX4_l4Un-6bQ4jXVOh1iYbh6P_nfYDImCwxRGhzg1RgzNE0TC2djYVNVqPHfNOtsshJRUu-Gb-Lk6igWlnwoRkdRDpvGd8l-jXNNL6_jv_0POQfVM7rN7ETPCXuDwAVvz7Rbb3mvRXp5dwBsYvDiH6_Ft9jukIAfSTg66FvqlpauWhEIqyS0Iv7Suh0UH0Xfoj4e5d4bC0gHl1p3D2YwSW1y8RyLyqe3BwIf9I0B4C1MqqpZMz2YWu_-d4_shO5l8_LF_mMTiCkmd83SRZLaWVlmuyswgpJMiQzBSNJkzFJ8qubPSm6yySqiy8U3qXc1Ly3FKVWNR8YtHbKPtWv-EAS9FaTNpTe7L3KL95iqqsF454UzGnRyx8WpqdR25ogIYUz28gCulSRiahKGDMEbs7VWPeci6cQPta5SWjluvv4EOrtH9ar3mUhc6JdBXaFxFI_ZyJXKNu4yeTkzru2WvyRCm-kpVOWKPw1q4YgxPSTILi6e3ZGSX3fl-MNFfjo4_P2N3EYBVwTlwh20szpf-OYKchX0xLORLrgTxlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+based+on+subject-specific+bands+to+recognize+pedaling+motor+imagery%3A+towards+a+BCI+for+lower-limb+rehabilitation&rft.jtitle=Journal+of+neural+engineering&rft.au=Delisle-Rodriguez%2C+Denis&rft.au=Cardoso%2C+Vivianne&rft.au=Gurve%2C+Dharmendra&rft.au=Loterio%2C+Flavia&rft.date=2019-10-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=16&rft.issue=5&rft.spage=56005&rft_id=info:doi/10.1088%2F1741-2552%2Fab08c8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ab08c8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon